فهرست مطالب
عنوان شماره صفحه
چکیده ۱
مقدمه ۲
فصل اول :آشنائی با سیستمهای کنترل غیر خطی چند متغیره
۱-۱مقدمه ۴
۱-۲روش های تحلیل سیستمهای کنترل غیر خطی ۴
۱-۲-۱-تحلیل صفحه فازی ۴
۱-۲-۲-نظریه لیاپانوف ۴
۱-۲-۳-توابع توصیف کننده ۴
۱-۳-روش های طراحی سیستمهای کنترل غیر خطی ۵
۱-۳-۱-روش آزمون و خطا ۶
۱-۳-۲-روش خطی سازی فیدبک ۶
۱-۳-۳-روش کنترل مقاوم ۶
۱-۳-۴-روش کنترل تطبیقی ۶
۱-۳-۴-روش زمانبندی بهره ۷
۱-۴تحلیل و طراحی سیستمهای چند متغیره ۷
۱-۴-۱-روش های فضای حالت ۷
۱-۴-۲- روش های پاسخ فرکانسی و مکان ریشه ۸
۱-۴-۳-روش های جایابی قطب ۸
۱-۴-۴-کنترل کننده های PID چند متغیره ۸
۱-۴-۵-سایر روش های طراحی سیستمهای کنترل چند متغیره ۹
فصل دوم :انواع روش های کنترل سیستمهای غیر خطی چند متغیره
۲-۱-کنترل پیش بین مدل ۱۱
۲-۱-۱-ویژگیهای مهم ومختلف ۱۱
۲-۱-۲-معایب این روش ۱۱
۲-۱-۲-مراحل طراحی ۲۱
۲-۱-۳-انواع روش های کنترل پیش بین ۲۱
۲-۱-۳-۱-LMPC (کنترل پیش بین خطی) ۲۱
۲-۱-۳-۲NMPC (کنترل پیش بین غیر خطی) ۲۱

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

عنوان شماره صفحه
۲-۱-۳-۳-مدلهای فضای حالت ۳۱
۲-۱-۴- تابع هزینه ۴۱
۲-۱-۵-الگوریتمهای کنترل پیش بین غیر خطی ۴۱
۲-۱-۶-مسأله مدلسازی ۵۱
۲-۱-۷مدلهای غیر خطی ۶۱
۲-۱-۸-مثال عملی در کنترل پیش بین در فر آیند های صنعتی ۷۱
۲-۲کنترل پیش بین تعمیم یافته ۰۲
۲-۳-کنترل سیستمهای دینامیکی غیر خطی با بهره گرفتن از شبکه های عصبی .. ۱۲
۲-۳-۱مزایای استفاده از شبکه های عصبی ۱۲
۲-۳-۲-شبکه های عصبی پیش سو ۲۲
۲-۳-۳-شبکه های عصبی پرسپترون چندلایه ۳۲
۲-۳-۴-آموزش یک شبکه عصبی ۳۲
۲-۳-۵-کاربردهای شبکه های عصبی ۴۲
۲-۴تلفیق کنترل پیش بین و مدلهای عصبی ۵۲
۲-۵کنترل تطبیقی ۶۲
۲-۵-۱مفاهیم اسا سی در کنترل تطبیقی ۶۲
۲-۵-۲-موارد کاربرد کنترل تطبیقی ۷۲
۲-۵-۳-کنترل تطبیقی مدل مرجع((MRAC ۹۲
۲-۵-۴-کنترل کننده های خود-تنظیم((STC ۰۳
۲-۵-۵-چگونه کنترل کننده های تطبیقی طراحی کنیم؟ ۱۳
۲-۵-۶-کنترل تطبیقی سیستمهای غیر خطی ۲۳
۲-۵-۷-مقاوم بودن سیستمهای کنترل تطبیقی ۲۳
۲-۵-۸-کنترل سیستمهای فیزیکی چند-ورودی ۳۳
۲-۶-کنترل فازی ۴۳
۲-۶-۱طراحی کنترل کننده های فازی ۶۳
۲-۶-۲-مراحل طراحی ۷۳
۲-۶-۳-کنترل فازی سیستمهای چند متغیره ۸۳
۲-۷-کنترل مقاوم ۹۳
۳ مثالی از کنترل کننده های چند ورودی  چند خروجی
٣-١روباتیک به عنوان نمونه اولیه ٤٣

 

 

 

 

 

 

 

 

عنوان شماره صفحه
جمع بندی و نتیجه گیری ۷۴
منابع و مآخذ
فهرست منابع فارسی ۰۵
فهرست منابع لاتین ۱۵

فهرست اشکال

 

 

 

 

 

 

 

 

 

 

 

 

 

عنوان شماره صفحه
شکل۲-۱عملکرد ردیابی تحت کنترل GPCغیر خطی ۰۲
شکل۲-۲-ساختار کنترل کننده پیش بین عصبی ۵۲
شکل۲-۳-مدل NARMAX عصبی ۵۲
شکل ۲-۴-ساختار شبکه عصبی تأخیرزمان ۵۲
شکل۲-۵-یک سیستم کنترل تطبیقی مدل مرجع ۹۲
شکل ۲-۶-یک کنترل کننده خود تنظیم ۰۳
شکل۲-۷-پاندول معکوس ۸۳
شکل ۳-۱-خطاهای ردیابی وگشتاورهای کنترل تحت کنترل تطبیقی ۴۴
شکل ۳-۲-تخمین پارامترها تحت کنترل تطبیقی ۵۴
شکل ۳-۳-خطاهای ردیابی وگشتاوری کنترل تحت کنترل P.D. ۶۴

فهرست جداول

 

 

 

 

عنوان شماره صفحه
جدول ۲-۱:پایداری GPC غیرخطی بهینه ۷۱
جدول۲-۲:درجه آزادی نسبی ۷۱

چکیده

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

فهرست مطالب صفحه
عنوان
چکیده ١١
مقدمه ١٣
فصل١ : ساختمان موتورهای رلوآتانسی
١-١-مقدمه ۶١
١-٢-عملکرد اولیه موتور رلوکتانس ١٨
١-٣-انواع موتورهای رلوآتانس متغیر ١٩
١-۴دسته بندی موتورهای رلوآتانسی از ﳊاظ ساختار ٢٠

١-۵– ایجاد گشتاوردر یک موتور رلوآتانس سوئیچی(روابط و نتایج)  ٢٣

١-۶– رابطه بین موقعیت روتور و اندوآتانس سیمپیچ استاتور    ٢٨

١-٧- مدار معادل موتور رلوآتانسی                                                                 ٣٠

فصل٢ : مدارات راه انداز (DRIVER)

٢-١-پیکربندی مدارات مبدل                                                                                   ۴٣

٢-٢-مبدل پل نامتقارن                                                                                             ۵٣

٢-٣-مبدﳍای یک سوئیچ در هر فاز                                                                      ٠۴

٢-۴مبدل R-Dump                                                                                                          ٠۴

٢-۵مبدل Bifilar                                                                                                              ١۴

٢-۶مبدل با منبع تغذیه dc دو نیمهای                                                        ٣۴

٢-٧-مبدل با q ترانزیستور و 2q دیود                                                          ۵۴

٢-٨-مبدل با (١(q+ سوئیچ و دیود                                                                     ٨۴

٢-٩-مبدل C-Dump                                                                                                          ٠۵

٢-١٠-مبدل C-Dump با قابلیت جریان هرزگرد                                              ٢۵

٢-١١-مبدل با یک ترانزیستور مشﱰك                                                                 ۵۵

٢-١٢-مبدل با حداقل تعداد سوئیچ و تغذیه ورودی متغیر      ۶۵

٢-١٣-مبدل با ولتاژ DC متغیر و توپولوژی Buck-Boost              ٧۵

٢-۴١-مبدل با (1 .5 q) سوئیچ و دیود                                                                  ٩۵

 

 

 

 

 

 

 

 

 

 

 

 

 

٢-۵١-مبدل دو مرحلهای ٠۶
فصل٣ : طراحی مدار راهانداز (DRIVER) به
روش مستقیم
٣-١-مقدمه ٣۶
٣-٢-سوئیچ و اﳌاای قدرت ۴۶
٣-٣-سنسور تعیین موقعیت و سرعت موتور ۶۶
٣-۴آنﱰل دور و حلقه فیدبک ٧۶
فصل۴ : روش های عملی کاهش ریپل گشتاور
۴-١-بدست آوردن رابطه گشتاور از مدار معادل SRM ٧٢
۴-٢-بررسی رابطه L با موقعیت روتور θ ٧٣
۴-٣-بررسی تاثیر جریان بر L ۵٧
۴۴اثر ثابت گشتاور dL(θ,i)/dθ بر روی گشتاور ٧٧
۴۵اثر i 2  بر روی گشتاور ٧٨
۴۶ﲨع بندی در مورد کاهش ریپل گشتاور ٨٠

فصل۵ : طراحی مدار راهانداز (DRIVER) به روش غیرمستقیم

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

۵-١-مقدمه ٨٢
۵-٢-تشخیص موقعیت روتور بدون استفاده از سنسور ٨٣
۵-٣-آنﱰل جهت چرخش ۶٩
فصل۶ : نتیجه گیری و پیشنهادات ٩٩
نتیجه گیری
پیشنهادات ١٠٢
پیوست نقشه های ﴰاتیکی سخت افزار دستگاه ١٠٣
پیوست اطلاعات نرم افزاری سیستم ١١٠
فصل٧ : مـراجـع ١٣٩

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

فهرست شکل ها صفحه
عنوان
١-١.a-شکل :دو ﳕونه موتور رلوآتانسی با یک دندانه در هر قطب. ١٧
١-١.b-شکل :ﳕونهای دیگر با دو دندانه در هر قطب . ١٧
١-٢.شکل : ﳓوه عملکرد موتور رلوآتانس. ١٩
١-٣-الف.شکل :ﴰای موتور رلوآتانس با برجستگی دوگانه. ٢٠
١-٣-ب.شکل :ﴰای موتور رلوآتانس با برجستگی واحد. ٢٠
١-۴-١.شکل :موتور رلوآتانس از نوع روتور صفحهای. ٢٢
١-۴-٢.شکل :موتور رلوآتانس سوئیچی چند لایه. ٢٣
١-۵-.aشکل :روتور با فاصله x از استاتور. ۶٢
١-۵-.bشکل :منحنی شار برحسب mmf برای x1  و x2  آه x1>x2 ۶٢
١-۶-.aشکل :یک قطب از موتور رلوآتانس. ٢٨
١-۶-.bشکل :منحنی اندوآتانس برحسب موقعیت روتور. ٢٨
١-٧-١.شکل :مدار معادل موتور رلوآتانسی. ٣١
١-٧-٢.شکل :منحنی گشتاور ـ سرعت یک موتور رلوآتانسی ﳕونه. ٣٢
٢-١.شکل :دستهبندی مدارات مبدل. ۴٣
٢-٢.a-شکل :مبدل پل نامتقارن. ۵٣
٢-٢.b-شکل :شکل موجهای مبدل پل نامتقارن ـ روش اول. ۶٣
٢-٢.c-شکل :شکل موجهای مبدل پل نامتقارن ـ روش دوم. ٣٨
٢-٢.d-شکل :استفاده از SCR و آاهش تعداد ترانزیستورهادرمبدل پل
نامتقارن. ٣٩
٢-۴-.aشکل :توپولوژی R-Dump ١۴
٢-۴-.bشکل :شکل موجهای توپولوژی R-Dump ١۴
٢-۵-.aشکل :مبدل Bifilar ٢۴
٢-۵-.bشکل :شکل موجهای مبدل Bifilar ٣۴
٢-۶-.aشکل :مبدل، منبع تغذیه dc دو نیمهای. ۴۴
٢-۶-.bشکل :شکل موجهای مبدل با منبع تغذیه دو نیمهای. ۵۴
٢-٧.a-شکل :مبدل با q ترانزیستور و 2q دیود. ۶۴

٢-٧.b-شکل :شکل موجهای مدار فوق با روش اول.                                         ٧۴

٢-٧.c-شکل :شکل موجهای مدار فوق با روش دوم.                                         ٨۴

٢-٨-١.شکل :مبدل با (١(q+ سوئیچ در هر فاز.                                           ٩۴

٢-٨-٢.شکل :ﲠبود یافته مدار(١(q+ ترانزیستوری.                                    ٠۵

٢-٩.a-شکل :مدار مبدل C-Dump                                                                              ١۵

٢-٩.b-شکل :شکل موجهای مبدل C-Dump                                                               ٢۵

٢-١٠-١.شکل :مبدل C-Dump با قابلیت جریان هرزگرد.                             ۴۵

٢-١٠-٢.شکل :عملکرد مدار بدون ﳘپوشانی جریان فازها.                       ۴۵

٢-١١.a-شکل :مبدل با یک ترانزیستور مشﱰك.                                                 ۵۵

٢-١١.b-شکل :عملکرد مدار.                                                                                      ۵۵

٢-١٢.شکل :مبدل با حداقل تعداد ترانزیستورو تغذیه ورودی متغیر.  ٧۵

٢-١٣.شکل :مبدل با ولتاژ DC متغیر و توپولوژی Buck-Boost         ٨۵

٢-۴١.a-شکل :مبدل با (1.5q) سوئیچ.                                                                     ٩۵

٢-۴١.b-شکل :عملکرد مدار.                                                                                      ٩۵

٢-۵١.شکل :مبدل دو مرحلهای.                                                                                ١۶

٣-١.شکل :بلوك دیاگرام مدار آنﱰل موتور.                                                  ٣۶

٣-٢-١.شکل :مدار ساده هر فاز.                                                                           ۴۶

٣-٢-٢.شکل :مدار درایو ترانزیستورهای قدرت.                                           ۵۶

٣-٣-١.شکل :مدار معادل فتواینﱰاپﱰ.                                                               ۶۶

٣-٣-٢.شکل :مدار آامل سنسورها.                                                                         ۶۶

٣-٣-٣.شکل :شکل موجهای ناشی از سنسورها.                                                  ٧۶

٣-۴-١.شکل :پالسهای PWM                                                                                       ٨۶

٣-۴-٢.شکل :مدار سرعت موتور.                                                                              ٨۶

٣-۴-٣.شکل :مدار آنﱰل PI                                                                                        ٩۶

٣-۴-۴.شکل IC-TL494:                                                                                                    ٧٠

۴-١.شکل :مدار معادل موتور رلوآتانسی.                                                       ٧٢

۴-٢-١.شکل :تغییرات اندوکتانس با موقعیت روتور.                                 ۴٧

۴-٢-٢.شکل :پایین شکل،روتوراصلاح شده درمقایسه باروتور معمولی.  ۵٧

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-2-2 ساختار فیزیکی ماشین سنکرون……………………………………… 22

-1-2-2 ساختار روتور و استاتور……………………………………………. 22

-2-2-2 سیم بندی های ماشین سنکرون 23………………………… …………..

-3-2 توصیف ریاضی ماشین سنکرون 23………………………………………………………………………………………. …………………………

-1-3-2 معادلات ریاضی حاکم بر ماشین سنکرون 23……… ……………

-2-3-2 معادلات حرکت 28                                            ………………………………………………………………………………………

-4-2 پارامترهای ماشین سنکرون 29…………………………………………………………… …………………………………………………………..

-1-4-2 پارامترهای اساسی………………………………………………………… 29

-2-4-2 پارامترهای عملیاتی 30………………………………………………………………………………. ………………………………….

-3-4-2 پارامترهای دینامیکی………………………………………………….. 31

-5-2 محاسبه پارامترهای دینامیکی ماشین سنکرون بر اساس پارامترهای اساسی

ماشین……….. 31

-1-5-2 محاسبه راکتانسهای ماشین 33

-2-5-2 محاسبه ثابت زمانی های ماشین………………………………… 35
-6-2 مراتب مختلف مدلهای ماشین سنکرون بر اساس مدل دو محوری پارك    37

فصل سوم: بررسی روش های شناسایی پارامترهای دینامیکی ژنراتور سنکرون        ..………………………………………………………………………………………………… 39

-1-3 مروری بر پیشینه شناسایی پارامترهای ژنراتورهای سنکرون 40         .…………………………………………………………………………………………………. ………………………..

-2-3 انواع روش های تعیین پارامترهای دینامیکی ژنراتور سنکرون 42       .……………………………………………………………………………………………….. ………………………….

-1-2-3 روش های کلاسیک اندازه گیری پارامترهای دینامیکی ژنراتورهای شبکه    42

-2-2-3 روش های جدید تعیین پارامترهای دینامیکی ژنراتورهای سنکرون     43

فصل چهارم: شناسایی بلادرنگ پارامترهای ژنراتور سنکرون با بهره گرفتن از شبکه عصبی

مصنوعی ..… ..      45

-1-4 کلیات و اصول کارشبکه های عصبی 46………………………………………………………………………………….. ………………………………

-2-4 اصول کار شبکه عصبی تخمین گر پارامترها……………… 46

-1-2-4 داده های آموزشی و آموزش شبکه عصبی………. .…………. 48

-2-2-4 تست شبکه عصبی تخمینگر……………………………………………… 50

-3-4 نتایج 51……………. .………………………………………. …………………………………………………………

-1-3-4 نمونه هایی از نتایج شبکه عصبی تخمینگر…. 53

-2-3-4 بررسی تحلیلی نتایج .……………………………………… 89

فصل پنجم: نتیجهگیری و پیشنهادات .…….. ..…………………………….. 97

ضمیمهها…………………………………………………………………………………………………. 100

ضمیمهالف- طرحهای بکار گرفته شده برای شبیهسازی ژنراتور سنکرون      101

ضمیمهب- نمودار پارامترهای بکار گرفته شده در شبیهسازی ژنراتور سنکرون ..………………………………………………………………………………………………………….. 105

منابع و ماخذ……………………………………………. .……………………………………. 110

فهرست جدول ها

 

 

 

 

 

 

 

 

 

۴-٣.شکل :تغییرات اندوکتانس با جریان بر حسب زاویه. ۶٧
۴-۴.شکل :استفاده از دیودهای هرزگرد برای ﲣلیه سریع تر جریان ٧٨
سیم پیچ.
۴-۵.شکل :کنﱰل جریان برای کاهش ریپل گشتاور. ٨٠
۵-١-١.شکل :شفت انکدر و سه عدد سنسور برای تشخیص موقعیت روتور ٨٢
دریک موتور سه فاز ۴/۶.
۵-٢-١.شکل :شکل جریان سیمپیچ در استاتور. ۵٨
۵-٢-٢.شکل :مدار مبدل ٦ سوئیچه با سه عدد مقاومت sense جریان. ۶٨
۵-٢-٣.شکل :مقطع عرضی یک موتور رلوکتانس. ٨٧
۵-٢-۴.شکل :پالسهای اعمال شده به یک فازﳕونه و جریان حاصله ٨٨
در ﳘان فاز.
۵-٢-۵.شکل :پالسهای اعمال شده به سه فاز و جریان حاصله در ٨٩
فازها.
۵-٢-۶.شکل :فاز A در حالت ﳘپوشانی کامل. ٩٢
۵-٢-٧.شکل :فاز A در حالت عدم ﳘپوشانی کامل. ٩٢
۵-٢-٨.شکل :پالسهای تشخیص و فرمان اعمال شده به یک فاز و ۴٩
جریاای حاصله.
۵-٢-٩.شکل :پالسهای تشخیص و فرمان اعمال شده به یک فاز و ۵٩
جریاای حاصله بعد از تقویت.
۵-٢-١٠.شکل :جریاای حاصل از پالسهای تشخیص هرسه فاز به ۵٩
صورت مالتی پلکس شده.
۵-٢-١١.شکل :پالسهای تشخیص وفرمان دو فاز متوالی. ۶٩
۵-٣-١.شکل :ترتیب فرمان ها برای حرکت راست گرد یا چپ گرد. ٩٧
۶-١.a-شکل :منحنی جریان فازها. ٩٩
۶-١.b-شکل :منحنی گشتاور قبل از آنﱰل جریان. ٩٩
۶-١.c-شکل :منحنی گشتاور باآنﱰل جریان. ٩٩
۶-٢.شکل :منحنی گشتاور برحسب سرعت موتور. ١٠٠
۶-٣.شکل :ارتباط میکرو با A/D و آنالوگ سوئیچ. ١٠٣

عنوان شماره صفحه
1-2 : مراتب مختلف مدلهای ژنراتور سنکرون 24
1-4 : فهرست پارامترهای دینامیکی ژنراتورهای سنکرون 38
2-4 : نتایج شبکه عصبی در دوره آموزش و تست از دیدگاه فراوانی خطا 81
3-4 : نتایج شبکه عصبی در دوره آموزش و تست از دیدگاه دامنه خطا 82

فهرست شکلها

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

عنوان شماره صفحه
: 1-1 نمای کلی فرایند ارزیابی و بهبود سیستمهای قدرت 3
: 1-2 مدارهای استاتور و روتور ماشین سنکرون 9
:2-2 مدار معادل ماشین بر اساس تئوری پارك 13
:3-2 توزیع شار در ماشین سنکرون طی دوره های زیرگذرا، گذرا و ماندگار 18
:4-2 مدار معادل ژنراتور سنکرون در حالت ماندگار 19
:5-2 مدار معادل ماشین سنکرون در دوره گذرا 20
:6-2 مدار معادل ماشین سنکرون طی دوره زیر گذرا 20
:7-2 مدار معادل ماشین جهت استخراج ثابت زمانی های گذرای مدار باز 21
: 8-2 مدارمعادل ماشین جهت استخراج ثابت زمانی های زیر گذرای مدار باز 22
: :1-4 طرح کلی سلول عصبی انسان 32
:2-4 شکل کلی سلول عصبی مصنوعی 33
:3-4 ساختار شبکه عصبی توسعه یافته 33
:4-4 شکل کلی روش تهیه اطلاعات بهره برداری ژنراتورهای سنکرون 35
:5-4 آلگوریتم آموزش شبکه عصبی 36
:6-4 طرح کلی روش تست و بهره برداری از شبکه عصبی 37
:7-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین xd” 39
:8-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 39
:9-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 40
:10-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd” 40
:11-4 هیستوگرام خطای شبکه عصبی در مرحله تست 41
:12-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 41
:13-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xd” 42

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

:14-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 42
:15-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 43
:16-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd” 43
:17-4 هیستوگرام خطای شبکه عصبی در مرحله تست 44
:18-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 44
:19-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xd” 45
:20-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 45
:21-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش 46
:22-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd” 46
:23-4 هیستوگرام خطای شبکه عصبی در مرحله تست 47
:24-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 47
:25-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین xq” 48
:26-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 48
:27-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 49
:28-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xq” 49
:29-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 50
:30-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 50
:31-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xq” 51
:32-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 51
:33-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 52
:34-4 نمودار خروجی شبکه عصبی تحت تست برای تخمین xq” 52
:35-4 هیستوگرام خطای شبکه عصبی در مرحله تست 53
:36-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 53
:37-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xq” 54
:38-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 54
:39-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 55

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

:40-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xq” 55
:41-4 هیستوگرام خطای شبکه عصبی در مرحله تست 56
:42-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 56
:43-4 نمودار خروجی شبکه عصبی درفرایند برای تخمین Td” 57
:44-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 57
:45-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 58
:46-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td” 58
:47-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 59
:48-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 59
:49-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Td” 60
:50-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 60
:51-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش 61
:52-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td” 61
:53-4 هیستوگرام خطای شبکه عصبی در مرحله تست 62
:54-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 62
:55-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Td” 63
:56-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 63
:57-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 64
:58-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td” 64
:59-4 هیستوگرام خطای شبکه عصبی در مرحله تست 65
:60-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 65
:61-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین Tq” 66
:62-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 66
:63-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 67
:64-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Tq” 67
:65-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 68

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

فصل سوم: روش ردگیری تکپالس……………………………………………………………… 18

-1-3 معرفی………………….. ………………… ………………………….. ……………………. 19

-2-3 اجزای یک رادار تکپالس………………. …………………………………………………….. 19

-3-3 مزایا و معایب تکپالس……………………………………………… ………………………. 27

-1-3-3 مزایا……………………………………………………. ……… …………………. 27

-2-3-3 معایب…………………………………………………. ……… …………………. 28

-4-3 پردازنده های تکپالس…………………………………………………. ……………………. 28

-1-4-3 پردازندهی دقیق تکپالس…………………………….. ……… ………………….. 29

-2-4-3 پردازنده به کارگیرنده اندازه خطی و فاز سیگنالها……… ……………………….. 30

-3-4-3 پردازش با بهره گرفتن از مولفه های I و 30…………………………………….. ……. Q

-4-4-3 پردازش با بهره گرفتن از فاز و اندازه لگاریتمی سیگنالهای s و 31……………… ….. d

-5-4-3 پردازش با بهره گرفتن از ضرب نقطهای به همراه 32…………………………… AGC

-6-4-3 پردازنده به کار گیرنده 33………………………………………. ……………. s  jd

-5-3 مقایسه پردازنده های تکپالس……………………………………………………………….. 36

-6-3 ردگیری برد………………………………………………………………………………….. 37

فصل چهارم: طراحی گیرنده دیجیتال………………………………………………………… 41

-1-4 معرفی………………………………………………………. ………………………………. 42

-2-4 محل نمونهبرداری……………………………………………………………………………. 46

-3-4 طرح کلی گیرنده دیجیتال………………………………………………………………….. 48

-4-4 مشخصات مبدل آنالوگ به دیجیتال……………………………………………………….. 49

-1-4-4 نحوه تبدیل آنالوگ به دیجیتال…………………………………………………… 49

-2-4-4 اثرات دیجیتال کردن سیگنال…………………………………………………….. 51

-3-4-4 تعداد بیت خروجی 54…………………………………………………………. A/D

-4-4-4 فرکانس نمونهبرداری………………………………………………………………. 55

-5-4 نمونهبرداری…………………………………………………………………………………. 57

-1-5-4 طیف سیگنال گسسته…………………………………………………………….. 57

-2-5-4 نمونهبرداری از سیگنال 58…………… …………………………………………. IF

-6-4 آمادهسازی سیگنال برای نمونهبرداری و بلوکهای قبل از 60………………………….. A/D

-1-6-4 تقویت کننده………… ……………………………………………….. …………. 60

62………… …………………………………………………………………… AGC -2-6-4

-3-6-4 فیلتر ضد آلیاس……………………………………………………………………. 65

-7-4 آشکارساز… …………………………………………………………………………………… 69

-8-4 فیلترهای پایینگذر دیجیتال……………………………. ……. ……………………………. 75

-9-4 خلاصه پردازشهای بخش زاویه و برد……………… ……………………………………….. 80

فهرست مراجع………………………………………………………………………………………. 82

چکیده انگلیسی…………………………………………………………………………………….. 84

فهرست شکلها

عنوان مطالب                                                                                               شماره صفحه

شکل -1-1  اندازه گیری برد در رادار…………………………………………………………………. 5

شکل -2-1 پالسهای رفت و برگشت در رادار………………………………………………………… 6

شکل -3-1 دیاگرام بلوکی رادار……………………………………………………………………….. 6

شکل -4-1 نمایشگر 8…………………………………………………………………………… PPI

شکل -1-2 مسیرهای معمول جستجو در مرحله اکتساب هدف…………………………………… 12

شکل -2-2 سیستم کنترلی ساده شده رادار ردگیر…………………………………………………. 12

شکل -3-2 تکنیک ردگیری لوبینگ متوالی………………………………………………………… 13

شکل -4-2 ردگیری اسکن کانونی………………………………………………………………….. 14

شکل -5-2 اکوی دریافتی از هدف در رادار اسکن کانونی………………………………………….. 15

شکل -6-2 دیاگرام بلوکی یک رادار اسکن کانونی………………………………………………….. 16

شکل -1-3 دیاگرام کلی عملکرد رادار تکپالس……………………………………………………… 20

شکل -2-3 نمای فیدهای رادار تکپالس مقایسه دامنه…………………………………………….. 21

شکل -3-3 فید یک رادار تکپالس…………………………………………………………………… 21

شکل -4-3 حالتهای مختلف دریافت انرژی با توجه به موقعیت هدف………………….. .           22

شکل -5-3 نحوه تشکیل سیگنالهای ∑، el  و 23………………………………………………….. az

شکل -6-3 بیم آنتن رادار تکپالس………………………………………………………………….. 23

شکل -7-3 نماد آنتن رادار تکپالس…………………………………………………………………. 24

شکل -8-3 نمودار ولتاژ خطا بر حسب زاویه انحراف……………………………………………….. 24

شکل -9-3 نمودار عملکرد رادار تکپالس……………………………………………………………. 26

شکل -10-3 پردازنده سرراست……………………………………………………………………… 30

شکل -11-3 پردازنده I و 31……………………………………………………………………….. Q

شکل -12-3 تقویتکننده لگاریتمی 31……………………………………………………………. IF

شکل -13-3 پردازش با بهره گرفتن از اندازه و فاز لگاریتمی…………………………………………… 32

شکل -14-3 پردازنده بکارگیرنده ضربکننده نقطهای و 33…………………………………… AGC

شکل -15-3 پردازنده بکارگیرنده 34…………………………………………………………… s  jd

شکل -16-3 اختلاف فاز s و 34…………………………………………………………………….. d

شکل -17-3 مقایسه خروجی پردازنده دقیق و پردازنده 35…………………………………… s  jd

شکل -18-3 سیستم ردگیری برد………………………………………………………………….. 38

شکل -19-3 آشکارسازی خطای ردگیری برد و گیتهای زود و دیر……………………………….. 39

شکل -20-3 ردگیری برد با بهره گرفتن از شمارنده…………………………………………………… 40

شکل -1-4 گیرنده همدوس معمول رادار…………………………………………………………… 46

شکل -2-4 طیف سیگنال میانگذر………………………………………………………………….. 47

شکل -3-4 طرح کلی گیرنده……………………………………………………………………….. 49

شکل -4-4 بخشهای مختلف یک 50……………………………………………………………. A/D

شکل -5-4 نمودار ورودی و خروجی یک 50……………………………………………………. A/D

شکل -6-4 خطای جبرانسازی……………………………………………………………………… 52

شکل -7-4 خطای بهره……………………………………………………………………………… 52

شکل -8-4 خطای غیرخطی بودن………………………………………………………………….. 53

شکل -9-4 تابع توزیع احتمال نویز چندیکردن……………………………………………………. 53

شکل -10-4 چگالی طیفی توان نویز چندیکردن………………………………………………….. 55

شکل -11-4 توان نویز چندیکردن در دو فرکانس نمونهبرداری…………………………………… 56

شکل -12-4 نمونهبرداری…………………………………………………………………………… 57

شکل -13-4 طیف سیگنال نمونهبرداری شده…………………………………………………….. 58

شکل -14-4 طیف سیگنال آنالوگ 58……………………………………………………………. IF

شکل -15-4 نمونهبرداری از سیگنال 59………………………………………………………….. IF

شکل -16-4 یک زنجیره تقویتکننده……………………………………………………………….. 61

شکل -17-4 نقطه برخورد درجه 61………………………………………………………………… 3

شکل -18-4 پاسخ پله فیلترهای چبیشف، باترورث و بسل……………………………………….. 67

شکل -19-4 طیف سیگنال میانگذر نمونهبرداری شده……………………………………………. 69

شکل -20-4 آشکارساز همدوس دیجیتال………………………………………………………….. 69

شکل -21-4 آشکارساز همدوس رادار………………………………………………………………. 70

شکل -22-4 آشکارساز همدوس دیجیتال…………………………………………………………. 71

شکل -23-4 تبدیل دوخطی……………………………………………………………………….. 73

شکل -24-4 طیف خروجی ضربکنندهها…………………………………………………………… 75

شکل -25-4 ساختار فیلتر پیشنهادی………………………………………………………………. 76

شکل -26-4 ساختار یک فیلتر 77……………………………………………………………… CIC

شکل -27-4 انتگرالگیر و فیلتر شانهای در فیلتر 77……………………………………………. CIC

شکل -28-4 سری کردن فیلترهای 78…………………………………………………………. CIC

شکل -29-4 پاسخ فرکانسی فیلتر CIC به ازای N=3، R=4 و 79………………………. M=4

:66-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 68
:67-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Tq” 69
:68-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 69
:69-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش 70
:70-4 نمودار خروجی شبکه عصبی تحت تست برای تخمین Tq” 70
:71-4 هیستوگرام خطای شبکه عصبی در مرحله تست 71
:72-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 71
:73-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Tq” 72
:74-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 72
:75-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 73
:76-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Tq” 73
:77-4 هیستوگرام خطای شبکه عصبی در مرحله تست 74
:78-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 74
ض-:1 طرح شبیه سازی ژنراتور سنکرون متصل به شین بینهایت با اغتشاش تغییر 88
ناگهانی تحریک
ض-:2 طرح شبیه سازی ژنراتور سنکرون متـصل بـه شـین بینهایـت بـا اغنـشاش 89
اتصالکوتاه درترمینال ژنراتور
ض-:3 طرح شبیه سازی ژنراتور سنکرون متصل به شین بینهایت با اغتشاش تغییر 90
ناگهانی توان ورودی
ض-:4 تغییرات مقادیر Xd بکار گرفته شده 92
ض-:5 تغییرات مقادیر Xd‘ بکار گرفته شده 92
ض-:6 تغییرات مقادیر Xd” بکار گرفته شده 92
ض-:7 تغییرات مقادیر Xq بکار گرفته شده 93
ض-:8 تغییرات مقادیر Xq” بکار گرفته شده 93
ض-:9 تغییرات مقادیر Xl بکار گرفته شده 93

ﭼﻜﻴﺪه …………………………………………………………………………………………………………………………………. 1
ﻣﻘﺪﻣﻪ …………………………………………………………………. ……………………………………………………………….. 2
ﻓﺼﻞ اول: ﻛﻠﻴﺎت
(1-1 ﻫﺪف………………………………………………………………………………………………………………………….. 4
(2-1 ﭘﻴﺸﻴﻨﻪ ﺗﺤﻘﻴﻖ ………………………………………………………………………………………………………… 4
(3-1   روش ﻛﺎر و ﺗﺤﻘﻴﻖ …………………………………………………………………………………………………… 4
ﻓﺼﻞ دوم : ﻣﻌﺮﻓﻲ ﭘﺴﺖ ﻫﺎی ﺗﺮاﻛﺸﻦ ﻳﺎ ﻳﻜﺴﻮﺳﺎز
(1-2 ﻣﻌﺮﻓﻲ ﭘﺴﺖ ﻫﺎی ﺗﺮاﻛﺸﻦ ﻳﺎ ﻳﻜﺴﻮﺳﺎز………………………………………………………………………… 5
(2-2 ﺑﺮرﺳﻲ ﺗﺠﻬﻴﺰات ﺳﻴﺴﺘﻢ ﺗﻮزﻳﻊ در ﭘﺴﺖ ﻫﺎی ﺗﺮاﻛﺸﻦ………………………………………………. 8
(1-2-2 ﻛﻠﻴﺪﻫﺎی …………………………………………………………………………………………………………..DC 8
( 2-2- 2 ﻛﺎﺑﻴﻦ ﻳﺎ ﻣﺤﻔﻈﻪ ﻛﻠﻴﺪﻫﺎی ………………………………………………………………………………DC 10
( 3-2- 2 ﺳﻮﺋﻴﭽﻬﺎی ﺟﺪاﺳﺎز و ﺗﻐﻴﻴﺮدﻫﻨﺪه …………………………………………………………………………. 12
( 4-2- 2 ﺗﺠﻬﻴﺰات ﺣﻔﺎﻇﺘﻲ و ﻛﻨﺘﺮل ﺟﺎﻧﺒﻲ………………………………………………………………………… 13
ﻓﺼﻞ ﺳﻮم : ﺑﺮرﺳﻲ ﺳﺎﺧﺘﻤﺎن و ﻧﺤﻮه ﻋﻤﻠﻜﺮد ﻛﻠﻴﺪﻫﺎی DC
( 1- 3 ﻣﺸﺨﺼﺎت و وﻳﮋﮔﻴﻬﺎی ﻛﻠﻴﺪﻫﺎی ………………………………………………………………………..DC 16
( 2- 3 ﻛﺎرﺑﺮد…………………………………………………………………………………………………………………………… 17
( 3- 3 ﻣﺸﺨﺼﺎت ﻓﻨﻲ ……………………………………………………………………………………………………………. 18
( 1-3- 3 ﭘﺎراﻣﺘﺮﻫﺎی ﻓﻨﻲ ﻛﻠﻴﺪﻫﺎی …………………………………………………………………………….. DC 18
( 2-3- 3 ﻣﻘﺪار ﺟﺮﻳﺎن ﺣﺮارﺗﻲ و اﺿﺎﻓﻪ ﺑﺎر ﺣﺎﻟﺖ ﮔﺬار…………………………………………………………. 19
(3-3-3 ﻗﻄﻊ وﺑﺎز ﺷﺪن ﻛﻠﻴﺪ ﺑﺼﻮرت ﻣﺴﺘﻘﻴﻢ در اﺛﺮ اﺿﺎﻓﻪ ﺟﺮﻳﺎن……………………………………… 20

ﻓﻬﺮﺳﺖ ﻣﻄﺎﻟﺐ

ﻋﻨﻮان ﻣﻄﺎﻟﺐ                                                                                                 ﺷﻤﺎره ﺻﻔﺤﻪ

( 4-3- 3 ﻣﻘﺪار وﻟﺘﺎژ 20…………………………………………………………………………………. Ve

( 5-3- 3 اﺿﺎﻓﻪ وﻟﺘﺎژ در ﻫﻨﮕﺎم ﻗﻄﻊ ﺷﺪن ﻛﻠﻴﺪ…………………………………………………….. 21

( 6-3- 3 زﻣﺎن ﻋﻤﻠﻜﺮد و واﻛﻨﺶ ﻣﻜﺎﻧﻴﻜﻲ ﻛﻠﻴﺪ……………………………………………………… 21

( 7-3- 3 ﻛﻞ زﻣﺎن ﻗﻄﻊ و ﺑﺎز ﺷﺪن ﻛﻠﻴﺪ……………………………………………………………… 21

( 8-3- 3 ﻇﺮﻓﻴﺖ ﻗﻄﻊ ﻛﻨﻨﺪﮔﻲ…………………………………………………………………………. 24

( 9-3- 3 ﻣﺸﺨﺼﺎت ﻗﻄﻊ…………………………………………………………………………………. 24

( 10-3- 3 ﻗﻄﻊ ﻛﻠﻴﺪ در ﺟﺮﻳﺎﻧﻬﺎی ﭘﺎﺋﻴﻦ………………………………………………………………. 26

( 11-3- 3 وﻟﺘﺎژﻫﺎی ﺗﺴﺖ ﺟﻬﺖ ﻗﺪرت ﻋﺎﻳﻘﻲ……………………………………………………….. 26

( 12-3- 3 ﭘﺎﻳﺪاری ﻣﻜﺎﻧﻴﻜﻲ……………………………………………………………………………… 27

( 13-3- 3 ﻣﺪار و دﺳﺘﮕﺎه وﺻﻞ ﻛﻨﻨﺪه………………………………………………………………… 27

( 4- 3 ﺑﺨﺸﻬﺎی اﺻﻠﻲ ﺳﺎﺧﺘﻤﺎن ﻛﻠﻴﺪ………………………………………………………………….. 28

( 5- 3 ﺑﻬﺮه ﺑﺮداری و ﻋﻤﻠﻜﺮد ﻛﻠﻴﺪ……………………………………………………………………… 31

( 1-5- 3 وﺻﻞ ﻛﺮدن ﻛﻠﻴﺪ ( 31…………………………………………………………….. ( Closing

( 2-5- 3 ﻗﻄﻊ ﻛﺮدن ﻛﻠﻴﺪ ( 34……………………………………………………………. ( Tripping

( 3-5- 3 ﺧﺎﻣﻮش ﻛﺮدن ﺟﺮﻗﻪ…………………………………………………………………………… 35

( 4-5- 3 ﺗﺠﻬﻴﺰات ﺟﺎﻧﺒﻲ و اﺧﺘﻴﺎری…………………………………………………………………… 36

( 6- 3 ﻛﻠﻴﺪﻫﺎی ﺗﻐﻴﻴﺮ دﻫﻨﺪه ﺟﺮﻳﺎن و ﺳﻜﻴﺴﻮﻧﺮﻫﺎ………………………………………………….. 36

( 7- 3 اﻧﻮاع ﻛﺎﺑﻴﻦ و ﻳﺎ ﻣﺤﻔﻈﻪ ﻛﻠﻴﺪﻫﺎی 41……………………………………………………….. DC

( 1-7 – 3 ﻛﺎﺑﻴﻦ و ﻳﺎ ﻣﺤﻔﻈﻪ ﻛﻠﻴﺪﻫﺎی DC ﻧﻮع 41……………………………………………… MB

( 2-7- 3 ﻛﺎﺑﻴﻦ و ﻳﺎ ﻣﺤﻔﻈﻪ ﻛﻠﻴﺪﻫﺎی DC ﻧﻮع 45…………………………………………… KMB

ﻓﻬﺮﺳﺖ ﻣﻄﺎﻟﺐ

ﻋﻨﻮان ﻣﻄﺎﻟﺐ                                                                                                 ﺷﻤﺎره ﺻﻔﺤﻪ

ﻓﺼﻞ ﭼﻬﺎرم : ﺗﻮاﺑﻊ و ﻋﻤﻠﻜﺮدﻫﺎی ﻗﺎﺑﻞ ﺑﺮﻧﺎﻣﻪ رﻳﺰی

( 1- 4 ﺗﻮاﺑﻊ و ﻋﻤﻠﻜﺮدﻫﺎی ﻛﻨﺘﺮﻟﻲ……………………………………………………………………… 51

(1-1-4 ﻓﺮﻣﺎن ON/OFF ﺑﺮای ﻛﻨﺘﺮل اﻟﻜﺘﺮﻳﻜﻲ ﻛﻠﻴﺪ…………………………………………….. 51

( 2-1- 4 ﻓﺮﻣﺎن ON/OFF ﺑﺮای ﻛﻨﺘﺮل ﻣﻐﻨﺎﻃﻴﺴﻲ ﻛﻠﻴﺪ………………………………………… 51

( 3-1- 4 اﻳﻨﺘﺮ ﺗﺮﻳﭗ ( 52……………………………………………………………. ( Inter tripping

(4-1-4 وﺻﻞ ﻣﺠﺪد ﺑﻄﻮر اﺗﻮﻣﺎﺗﻴﻚ( 54    ( Anti- Pumping / Automatic Reclosing

( 5-1- 4 ﺣﻔﺎﻇﺖ ﺧﻂ ﺗﺴﺖ ( 55……………………………. ( Protection line test = EDL

( 6-1- 4 ﺣﻔﺎﻇﺖ ﺧﺎرﺟﻲ ﺧﻂ ﺗﺴﺖ………………………………………………………………….. 58

( 2- 4 ﺗﻮاﺑﻊ و ﻋﻤﻠﻜﺮدﻫﺎی ﺣﻔﺎﻇﺘﻲ……………………………………………………………………. 59

(1-2-4 ﺣﻔﺎﻇﺖ ﺑﺮ اﺳﺎس اﻧﺪازه ﮔﻴﺮی ﺟﺮﻳﺎن………………………………………………………… 59

( 1-1-2- 4 ﺣﻔﺎﻇﺖ 59…………………………………………………………………………. I max +

( 2-1-2- 4 ﺣﻔﺎﻇﺖ 60…………………………………………………………………………. I max –

( 3-1-2- 4 ﺣﻔﺎﻇﺖ ﺑﻮﺳﻴﻠﻪ 61…………………………………………….. ( ∆ I and T) DDL +

( 4-1-2- 4 ﺣﻔﺎﻇﺖ ﺑﻮﺳﻴﻠﻪ – 66……………………………………………… ( ∆ I and T) DDL

( 5-1-2- 4 ﺣﻔﺎﻇﺖ ﺣﺮارﺗﻲ……………………………………………………………………………… 67

( 6-1-2- 4 ﻗﻄﻊ ﻗﻮس اﻟﻜﺘﺮﻳﻜﻲ ﻳﺎ ﺟﺮﻗﻪ ( 68…………………………… ( Inter Rupted Arc

(2-2-4 ﺣﻔﺎﻇﺖ ﺑﺮ اﺳﺎس اﻧﺪازه ﮔﻴﺮی وﻟﺘﺎژ…………………………………………………………… 69

( 1-2-2- 4 ﺧﻂ ﺑﺮق دار اﺳﺖ ( ﻣﺎﻧﺘﻴﻮرﻳﻨﮓ وﻟﺘﺎژ ﻓﻴﺪر 69………………………………….. ( UF

(2-2-2-4 ﺣﻔﺎﻇﺖ 70……………………………………………………………………………………. ∆u

(3-2-2-4 ﺣﻔﺎﻇﺖ ﻣﻴﻨﻴﻢ وﻟﺘﺎژ ﻓﻴﺪر ( 70………………………………………. ( U feeder Low

ﻓﻬﺮﺳﺖ ﻣﻄﺎﻟﺐ

ﻋﻨﻮان ﻣﻄﺎﻟﺐ                                                                                                 ﺷﻤﺎره ﺻﻔﺤﻪ

( 3-2- 4 ﺣﻔﺎﻇﺖ ﺑﺮ اﺳﺎس اﻧﺪازه ﮔﻴﺮی وﻟﺘﺎژ و ﺟﺮﻳﺎن…………………………………………….. 71

( 1-3-2- 4 اﻓﺖ وﻟﺘﺎژ ( 71………………………………………………………. (  falling voltage

( 4-2- 4 ﺣﻔﺎﻇﺖ ﺑﺮ اﺳﺎس اﻧﺪازه ﮔﻴﺮی ﻛﻤﻜﻲ و ﺟﺎﻧﺒﻲ…………………………………………… 72

( 1-4-2- 4 ﺟﺒﺮان ﺳﺎزی ﻣﺮﺑﻮط ﺑﻪ ﺑﺎر………………………………………………………………… 73

( 2-4-2- 4 ﺷﻨﺎﺳﺎﻳﻲ ﻓﺎﻟﺖ و ﻋﻴﺐ ﻋﺎﻳﻘﻲ ﻓﻴﺪر ( 73…………………………………………. ( DDI

ﻓﺼﻞ ﭘﻨﺠﻢ : ﺳﻴﺴﺘﻢ ﻫﺎی ﻧﻈﺎرﺗﻲ و ﻛﻨﺘﺮﻟﻲ ﺑﺮای ﭘﺴﺖ ﻫﺎی ﺗﺮاﻛﺸﻦ

( 1- 5 ﻣﻘﺪﻣﻪ ای ﺑﺮ ﺳﻴﺴﺘﻢ ﻫﺎی ﻧﻈﺎرﺗﻲ و ﻛﻨﺘﺮﻟﻲ ﺑﺮای ﭘﺴﺖ ﻫﺎی ﺗﺮاﻛﺸﻦ…………………. 75

( 2- 5 ﻣﻌﺮﻓﻲ رﻟﻪ 79……….. ( Remote control and protection system = sepcos)

( 1-2- 5 ﺷﺮح ﻛﻠﻲ 79…………………………………………………………………………… Sepcos

( 2-2- 5 ﻋﻤﻠﻜﺮد 80………………………………………………………………………………. Sepcos

( 3-2- 5 ﻋﻤﻠﻜﺮدﻫﺎی ﺛﺒﺖ ﻛﻨﻨﺪه………………………………………………………………………. 80

( 4-2- 5 اﻣﻜﺎﻧﺎت ارﺗﺒﺎﻃﻲ و ﻣﺨﺎﺑﺮاﺗﻲ…………………………………………………………………. 82

( 5-2- 5 ﺗﻮﺻﻴﻒ ﺳﺨﺖ اﻓﺰاری و ﻣﺸﺨﺼﺎت ﻓﻨﻲ…………………………………………………… 83

( 1-5-2- 5 ﺗﻮﺻﻴﻒ ﺳﺨﺖ اﻓﺰاری……………………………………………………………………… 83

(2-5-2-5 ﻣﺸﺨﺼﺎت ﻓﻨﻲ ﺳﺎﺧﺘﻤﺎن 85……………………………………………………….. Sepcos

( 6-2- 5 ﻣﻌﺮﻓﻲ ﻧﺮم اﻓﺰار………………………………………………………………………………… 97

( 1-6-2- 5 ﻧﺤﻮه ﻋﻤﻠﻜﺮد و ﻛﺎرﺑﺮد ﻧﺮم اﻓﺰار………………………………………………………….. 98

( 3- 5 دﺳﺘﮕﺎه اﻧﺪازه ﮔﻴﺮی وﻟﺘﺎژ و ﺟﺮﻳﺎن ( 104……………………………………………… ( MIU

( 1-3- 5 ﻣﻌﺮﻓﻲ 105………………………………………………………………………………….. MIU

ﻓﻬﺮﺳﺖ ﻣﻄﺎﻟﺐ

ﻋﻨﻮان ﻣﻄﺎﻟﺐ                                                                                                 ﺷﻤﺎره ﺻﻔﺤﻪ

( 2-3- 5 ﻣﺸﺨﺼﺎت اﻟﻜﺘﺮﻳﻜﻲ 106…………………………………………………………………. MIU

ﻓﺼﻞ ﺷﺸﻢ : ﻧﺘﻴﺠﻪ ﮔﻴﺮی و ﭘﻴﺸﻨﻬﺎدات

ﻧﺘﻴﺠﻪ ﮔﻴﺮی و ﭘﻴﺸﻨﻬﺎدات………………………………………………………………………………… 110

ﺿﻤﻴﻤﻪ ا ﻟﻒ : واژه ﻧﺎﻣﻪ اﻧﮕﻠﻴﺴﻲ ﺑﻪ ﻓﺎرﺳﻲ…………………………………………………………… 111

ﺿﻤﻴﻤﻪ ب : ﭼﻜﻴﺪه ﻣﻘﺎﻟﻪ…………………………………………………………………………………. 114

ﻣﻨﺎﺑﻊ و ﻣﺎﺧﺬ

ﻓﻬﺮﺳﺖ ﻣﻨﺎﺑﻊ ﻻﺗﻴﻦ……………………………………………………………………………………….. 115

ﭼﻜﻴﺪه اﻧﮕﻠﻴﺴﻲ…………………………………………………………………………………………….. 116

ﻓﻬﺮﺳﺖ ﺟﺪول ﻫﺎ

ﻋﻨﻮان ﻣﻄﺎﻟﺐ                                                         ﺷﻤﺎره ﺻﻔﺤﻪ

:1-2 ﻣﺸﺨﺼﺎت وﻟﺘﺎژ و ﺟﺮﻳﺎن اﻧﻮاع ﻣﺨﺘﻠﻒ ﻛﻠﻴﺪﻫﺎی ) DC ﻧﻮع UR و 9…………… ( HPB

:2-2 ﻣﺸﺨﺼﺎت وﻟﺘﺎژ و ﺟﺮﻳﺎن ﻛﺎﺑﻴﻦ ﻳﺎ ﻣﺤﻔﻈﻪ DC ﻧﻮع 10……………………………………. K

:3-2 ﻣﺸﺨﺼﺎت وﻟﺘﺎژ و ﺟﺮﻳﺎن ﻛﺎﺑﻴﻦ ﻳﺎ ﻣﺤﻔﻈﻪ DC ﻧﻮع 11………………………………… MB

:4-2 ﻣﺸﺨﺼﺎت وﻟﺘﺎژ و ﺟﺮﻳﺎن ﻛﺎﺑﻴﻦ ﻳﺎ ﻣﺤﻔﻈﻪ DC ﻧﻮع 12……………………………… KMB

:5-2 ﻣﺸﺨﺼﺎت ﻓﻨﻲ ﺳﻮﺋﻴﭽﻬﺎی ﺟﺪاﺳﺎز و ﺗﻐﻴﻴﺮ دﻫﻨﺪه…………………………………………. 13

:1-3 ﻣﺸﺨﺼﺎت ﻓﻨﻲ ﭘﺎراﻣﺘﺮﻫﺎی ﻗﻄﻊ ﻛﻨﻨﺪﮔﻲ ﻛﻠﻴﺪ 24………………………………………. DC

ﻓﻬﺮﺳﺖ ﺷﻜﻞ ﻫﺎ

ﻋﻨﻮان ﻣﻄﺎﻟﺐ                                    ﺷﻤﺎره ﺻﻔﺤﻪ

:1-2 ﻛﻠﻴﺪﻫﺎی ) DC ﻧﻮع UR و 9     …………………………………………………….. ( HPB

:2-2 ﻛﺎﺑﻴﻦ ﻳﺎ ﻣﺤﻔﻈﻪ ﻛﻠﻴﺪ ﻧﻮع 10…………………………………………………………………… K

:3-2 ﻛﺎﺑﻴﻦ ﻳﺎ ﻣﺤﻔﻈﻪ ﻛﻠﻴﺪ ﻧﻮع 11……………………………………………………………….. MB

:4-2 ﻛﺎﺑﻴﻦ ﻳﺎ ﻣﺤﻔﻈﻪ ﻛﻠﻴﺪﻫﺎی ﻧﻮع 12……………………………………………………….. KMB

:5-2 ﺳﻮﺋﻴﭽﻬﺎی ﺟﺪاﺳﺎز و ﺗﻐﻴﻴﺮ دﻫﻨﺪه…………………………………………………………….. 13

:6-2 رﻟﻪ 13     ………………………………………………………………………………… Sepcos

:7-2 دﺳﺘﮕﺎه اﻧﺪازه ﮔﻴﺮی 14…………………………………………………………………….. MIU

:1-3 ﻛﺎرﺑﺮدﻫﺎی ﻛﻠﻴﺪ 18…………………………………………………………………………….. DC

:2-3 ﭘﺎراﻣﺘﺮﻫﺎی ﻓﻨﻲ ﻛﻠﻴﺪ 19    …………………………………………………………………. DC

:3-3 زﻣﺎن ﻋﻤﻠﻜﺮد واﻛﻨﺶ ﻣﻜﺎﻧﻴﻜﻲ ﻛﻠﻴﺪ 22………………………………………………… UR26

:3-4 زﻣﺎن ﻋﻤﻠﻜﺮد واﻛﻨﺶ ﻣﻜﺎﻧﻴﻜﻲ ﻛﻠﻴﺪ 22     …………………………………….. UR36,40

:5-3 ﻛﻞ زﻣﺎن ﻗﻄﻊ و ﺑﺎز ﺷﺪن ﻛﻠﻴﺪ ﻧﻮع 23    ……………………………………………. UR26

:6 -3  ﻛﻞ زﻣﺎن ﻗﻄﻊ و ﺑﺎز ﺷﺪن ﻛﻠﻴﺪ ﻧﻮع 23     …………………………………… UR36,40

:7-3 ﻣﺸﺨﺼﺎت ﻗﻄﻊ 42    ……………………………………….. UR26…82 , UR26…81

:8-3 ﻣﺸﺨﺼﺎت ﻗﻄﻊ 42     ……………………………………… UR36…64 , UR26…64

:9-3 ﺷﻜﻞ ﻧﻮﺳﺎن وﻟﺘﺎژ و ﺟﺮﻳﺎن در ﻫﻨﮕﺎم ﻗﻄﻊ اﺗﺼﺎل ﻛﻮﺗﺎه. 26……………… UR26…82S

:10-3 ﺷﻜﻞ ﻧﻮﺳﺎن وﻟﺘﺎژ و ﺟﺮﻳﺎن در ﻫﻨﮕﺎم ﻗﻄﻊ اﺗﺼﺎل ﻛﻮﺗﺎه 26     ………. UR36…81S

:11-3 ﺳﺎﺧﺘﻤﺎن ﻛﻠﻴﺪ DC ﻧﻮع 28……………………………………………………………… HPB

:12-3 ﻧﺤﻮه ﻋﻤﻠﻜﺮد دﺳﺘﮕﺎه وﺻﻞ ﻛﻨﻨﺪه ( 30…………………………….. ( Closing device

:13-3 اﺟﺰاء ﻣﺨﺘﻠﻒ ﺳﺎﺧﺘﻤﺎن ﻛﻠﻴﺪ 30………………………………………………………….. DC

ﻓﻬﺮﺳﺖ ﺷﻜﻞ ﻫﺎ

ﻋﻨﻮان ﻣﻄﺎﻟﺐ                                             ﺷﻤﺎره ﺻﻔﺤﻪ

:14-3 ﺳﺎﺧﺘﻤﺎن ﻛﻠﻴﺪ DC ﻧﻮع 32………………………………………………………………….. UR

:15-3 ﻣﺮاﺣﻞ ﺧﺎﻣﻮش ﻛﺮدن ﺟﺮﻗﻪ…………………………………………………………………….. 35

:16-3 ﻛﻠﻴﺪﻫﺎی 37………………………………………………………………………….. SWS,SWI

:17-3 ﻧﺤﻮه ﻛﺎرﺑﺮد SWS,SWI و ﻣﺪار ﻓﺮﻣﺎن………………………………………………………. 40

:18-3 ﻧﻤﺎی ﺟﻠﻮی ﺗﺎﺑﻠﻮی 41………………………………………………………………………… MB

:19-3 ﺗﺎﺑﻠﻮی MB ﺑﻪ ﻫﻤﺮاه اراﺋﻪ ﻛﻠﻴﺪ………………………………………………………………… 42

:20-3 ﺑﺨﺸﻬﺎی ﻣﺨﺘﻠﻒ ﻣﺪار ﻓﺮﻣﺎن ﺗﺎﺑﻠﻮی 43……………………………………………………. MB

:21-3 ﺑﺨﺸﻬﺎی ﻣﺨﺘﻠﻒ ﺗﺎﺑﻠﻮی 45…………………………………………………………………… MB

:22-3 ﻛﺎﺑﻴﻦ ﻳﺎ ﻣﺤﻔﻈﻪ ﻛﻠﻴﺪ DC ﻧﻮع 46……………………………………………………… KMB

:1-4 ﺗﻮاﻟﻲ وﺻﻞ و ﻗﻄﻊ ﻛﻠﻴﺪ ﺑﻄﻮر اﻟﻜﺘﺮﻳﻜﻲ………………………………………………………… 51

:2-4 ﺗﻮاﻟﻲ وﺻﻞ و ﻗﻄﻊ ﻛﻠﻴﺪ ﺑﻄﻮر ﻣﻐﻨﺎﻃﻴﺴﻲ…………………………………………… .            52

:3-4 ﻳﻚ ﻧﻤﻮﻧﻪ از ﺗﻮاﻟﻲ ﻋﻤﻠﻜﺮد ﺳﻴﮕﻨﺎل اﻳﻨﺘﺮﺗﺮﻳﭗ………………………………………………… 54

:4-4 ﻧﺤﻮه ﻣﻘﺎﻳﺴﻪ وﻟﺘﺎژﻫﺎی 56………… …………………………………. U feeder , U busbar

:5-4 ﻣﺪار ﻗﺪرت اﻧﺪازه ﮔﻴﺮی ﻣﻘﺎوﻣﺖ ﺧﻂ 57       ………………………………………….. EDL

:6-4 ﻣﺮاﺣﻞ اﻧﺠﺎم ﺗﺴﺖ 58…………………………………………………………………………. EDL

:7-4 ﺣﻔﺎﻇﺖ 60…………………………………………………………………………………. I max +

:8-4 ﺣﻔﺎﻇﺖ 61………………………………………………………………………………….. I max –

: 9-4 ﺣﻔﺎﻇﺖ 62       …………………………………………………………………………. DDL +

:10-4 ﻣﺜﺎﻟﻲ از ﺗﻨﻈﻴﻢ ﭘﺎراﻣﺘﺮﻫﺎی ﺣﻔﺎﻇﺖ66………………………………………………… DDL+

:11-4 ﻛﺎرﺑﺮد ﺣﻔﺎﻇﺖ 66………………………………………………………………………… DDL –

-1-1پیشینه موضوع……………………………………………………………………………………………. 5

-2-1وضعیت کنونی موضوع………………………………………………………………………………….. 7

-3-1هدف پروژه……………………………………………………………………………………………….. 9

-2  مفاهیم کلی عیبیابی وحفاظت ترانسفورماتورها…………………………………………………… 12

-1-2اهداف کلی پایش ترانسفورماتور ها…………………………………………………………………….. 13

-2-2ساختار کلی سیستم پایش………………………………………………………………………………… 14

-3-2روش های مختلف تشخیص عیب…………………………………………………………………………. 21

-4-2عیوب مرسوم در ترانسفور ماتور ها……………………………………………………………………. 22

-3  اصول و مبانی روش آنالیز پاسخ فرکانسی……………………………………………………….. 25

-1-3 روش های مختلف شناسائی عیوب مکانیکی……………………………………………………………. . 26

-2-3 تئوری روش آنایز پاسخ فرکانسی………………………………………………………………………. 27

-3-3 روش اندازه گیری در ترانسفورماتورها………………………………………………………………… 28

-1-3-3 روش جاروی فرکانسی…………………………………………………………………………… 30

-2-3-3 روش ولتاژ ضربه……………………………………………………………………………….. 31

-3-3-3 مزایا و معایب روش جاروی فرکانسی و ولتاژ ضربه…………………………………………… 31

-4-3 انواع روشها برای مقایسه نتایج حاصل از اندازه گیریها………………………………………………. 32

-5-3 مراحل پیشرفت روش تابع تبدیل برای پایش ترانسفورماتورها………………………………………… 36

-1-5-3 تابع تبدیل برای آزمایش ترانسفورماتورهای بزرگ…………………………………………….. 36

-2-5-3 تابع تبدیل برای پایش……………………………………………………………………………. 38

-1-2-5-3 تابع تبدیل برای پایش به صورت همزمان با بهره برداری و در حالت خروج از مدار………. 39

-2-2-5-3 تابع تبدیل به عنوان یک روش تشخیص عیب مقایسهای…………………………………….. 39

-6-3 عوامل کلیذی موثر بر اندازه گیری های 41………………………………………………………. FRA

فهرست مطالب
عنوان مطالب                                                                                                       شماره صفحه

-1-6-3 تاثیر مقدار امپدانس موازی 41………………………………………………… …………………………..

-2-6-3 تاثیر بو شینگهای فشار قوی 43……………………………………………….. …………………………..

-3-6-3 تاثیر اتصال نقطه خنثی سیم پیچ فشار قوی 44……………………………….. …………………………..

-4-6-3 تاثیر سیمهای رابط اندازه گیری 45…………………………………………… …………………………..

-7-3 دقت پردازش سیگنال در روش زمانی 47…………………………………………… …………………………..

-1-7-3 فرکانس نمونه برداری 47……………………………………………………… …………………………..

-2-7-3 مدت زمان نمونه برداری 48…………………………………………………… …………………………..

-3-7-3 تبدیل آنالوگ به دیجیتال 50……………………………………………………. …………………………..

-4  انواع روش های مدلسازی ترانسفورماتورها………………………………………………………….. 51

-1-4 روش های مدلسازی جعبه سیاه…………………………………………………………………………….. 52

-2-4 بررسی روش های مدلسازی فیزیکی……………………………………………………………………… 53

-1-2-4 مدل خط انتقال چند فازه……………………………………………………………………………. 54

-2-2-4 مدل مشروح 55…………………………………………………………………. …………………………..

-1-2-2-4 مدلسازی براساس اندوکتانسهای خودی و متقابل 56………………………. …………………………..

-3-4 مدل هایبرید 62………………………………………………………………………… …………………………..

-4-4 انتخاب مدل مناسب برای مانیتورینگ…………………………………………………………………… 63

-5 مدل فرکانس بالای سیم پیچ ترانسفور ماتور………………………………………………………… 65

-1-5 مدل ترانسفور ماتوربر پایه ساختار فیزیکی سیم پیچ 66……………………………. …………………………..

-2-5 مدل مشروح ترانسفور ماتور…………………………………………………………………………….. 68

-1-2-5 محاسبه ظرفیتهای الکتریکی 69……………………………………………….. …………………………..

-1-1-2-5 تخمین ظرفیت طولی یک سیمپیچ بشقابی واژگون…………………………………………….. 71

-2-1-2-5 تخمین ظرفیت الکتریکی بین دو سیمپیچ و یا بین یک سیمپیچ و زمین 74.. …………………………..

-2-2-5 محاسبه اندوکتانسهای خودی و متقابل…………………………………………………………….. 75

-1-2-2-5 محاسبه اندوکتانس متقابل 76……………………………………………….. …………………………..

-2-2-2-5 محاسبه اندوکتانس خودی……………………………………………………………………….. 77

-3-2-5 محاسبه مقاومتهای عایقی موازی………………………………………………………………….. 78

-4-2-5 محاسبه مقاومتهای اهمی سری……………………………………………………………………… 79

فهرست مطالب
عنوان مطالب                                                                                       شماره صفحه

-6 نتایج شبیه سازی انواع عیوب ترانسفور ماتور…………………………………………………….. 81

-1-6 بررسی جابجائی محوری سیم پیچها نسبت بهم………………………………………………………….. 83

-2-6 نتایج آنالیز حساسیت توابع تبدیل نسبت به تغییر شکل شعاعی 88………………….. …………………………..

-3-6 تاثیر اتصال کوتاه بین حلقه ها روی پارمترهای مدل مشروح…………………………………………. 92

-7 تشخیص نوع عیوب ترانسفورماتوربه کمک شبکه عصبی…………………………………….. 95

-1-7 استخراج ویژگیها…………………………………………………………………………………………. 97

-2-7 شبکه های عصبی مصنوعی…………………………………………………………………………….. 98

-1-2-7 ساختار شبکه های عصبی 99…………………………………………………. …………………………..

-2-2-7 شبکه های عصبی پرسپترون چند لایه………………………………………………………….. 100

-3-7 بکار گیری شبکه عصبی جهت شناسائی نوع عیب ترانسفور ماتور…………………………………. 102

-8 نتیجهگیری و پیشنهادات………………………………………………………………………………… 108

منابع………………………………………………………………………………………………………………. 111

چکیده انگلیسی………………………………………………………………………………………………. 116

فهرست جداول
عنوان                                                                                                      شماره صفحه

جدول -1-3 فرکانس fmax که در آن طیف یک ولتاژ ضربه صاعقه استاندارد در نویز لبریز میشود، به

صورت تابعی از تفکیکپذیری مبدل 50……………………………………………………………… (A/D)

جدول -1-6 تغییرات فرکانسهای تشدید در اثر جابجائی محوری سیمپیچ………………………… 87

جدول -2-6 تغییرات فرکانسهای تشدید در اثر تغییر شکل شعاعی سیمپیچ………………………. 91

جدول -1-7 انواع حالتهای خطا و کد خروجی شبکه برای آن نوع خطا 103         …………………………..

جدول -2-7 بردار ورودی متناسب با نوع خطای مربوطه جهت آزمایش……………………… 103

جدول -3-7 داده های خروجی شبکه و کد خطای مربوطه……………………………………….. 103

جدول 4-7 بردار ورودی 3 ×16 متناظر بانوع خطای مربوطه جهت آزمایش 105.          …………………………..

جدول -5-7 بردار خروجی شبکه ونوع خطای مربوطه 106…………………. …………………………..

فهرست شکلها
عنوان                                                                                                    شماره صفحه

شکل -1-2 ارتباط بخشهای مختلف یک سیستم پایش…………………………………………………. 18

شکل -2-2 ساختار مدیریت بهربرداری…………………………………………………………………. 19

شکل -3-2 نتایج آماری از انواع عیبهای مرسوم در ترانسفورماتور……………………………… 23

شکل -1-3 ترانسفورماتور بصورت شبکه دو قطبی خطی…………………………………………. 27

شکل -2-3 اندازه گیری تابع انتقال در حوزة فرکانس……………………………………………….. 29

شکل -3-3 اندازه گیری تابع انتقال در حوزة زمان…………………………………………………… 29

شکل -4-3 مدار اندازه گیری تابع انتقال در روش جاروی فرکانس………………………………. 30

شکل -5-3 روش های مختلف مقایسه توابع انتقال………………………………………………………. 33

شکل -6-3 مقایسه بین فازها برای ترانسفورماتور……………………………………………………. 34

شکل -7-3 مقایسه بین فازها برای ترانسفورماتور با ثانویه زیگزاگ…………………………….. 35

شکل -8-3 اثر مقاومت شنت روی پاسخ فرکانسی تا 42…………………………………….. 10MHZ

شکل -9-3 اندازه گیریهای FRAدر بالا وپایین بوشینگ………………………………………………. 44

شکل -10-3 اثر وضعیت نقطه خنثی در اندازه گیریها( دردو حالت شناور و زمین شده)…… 45

شکل -11-3 مقایسه اثرسیمهای رابط کوتاه و بلند در اندازه گیریها تا 46………………… 10MHZ

شکل -1-4 نمایش ترانسفورماتور به صورت یک چهار قطبی……………………………………. 52

شکل -2-4 مدل یک ترانسفورماتور تشکیل شده از یک سیمپیچ بشقابی و یک سیمپیچ لایهای

براساس اندوکتانسهای خودی و متقابل……………………………………………………………… 58

شکل -1-5 ساختار فیزیکی سیم پیچی دیسکی ترانسفورماتور ومدل هر دیسک از آن……….. 67

شکل -2-5 مدل مداری معادل هر دیسک RLC) معادل)…………………………………………. .. 68

شکل (a -3-5 زوج دیسک واژگون، (b زوج دیسک درهم………………………………………. 70

شکل -4-5 نمایش ظرفیتهای بین بشقابها و پتانسیل زمین و یا سیمپیچ مجاور……………………. 71

شکل -5-5 توزیع ظرفیتهای الکتریکی در یک سیمپیچ بشقابی واژگون………………………….. 71

شکل -6-5 لایه های مختلف عایقی بین دو سیمپیچ……………………………………………………. 75

شکل -7-5 دو حلقه موازی………………………………………………………………………………… 76

شکل -8-5 تعریف پارامترهای یک حلقه……………………………………………………………….. 77

فهرست شکلها
عنوان                                                                                                    شماره صفحه

شکل -1-6 مدار بررسی شده با شرایط پایانههای سیمپیچ فشارقوی و سیمپیچ فشارضعیف….. 84

شکل -2-6 تأثیرات تغییرات جابجائی محوری سیمپیچها روی پارامترهای مدل مشروح…….. 84

شکل -3-6 مقایسه نتایج شبیه سازی حالت سالم و معیوب توابع تبدیل ولتاژ خروجی نسبت به ولتاژ

ورودی در حوزه زمان ، به منظور بررسی توابع تبدیل نسبت به جابجائی محوری……… 85

شکل -4-6  مقایسه نتایج شبیه سازی حالت سالم و معیوب توابع تبدیل ولتاژخروجی نسبت به ولتاژ

ورودی در حوزه فرکانس ، به منظور بررسی حساسیت نسبت به جابجائی محوری……. 86

شکل -5-6 نما از بالای سیمپیچ فشارقوی (HV) تغییر شکل یافته و سیمپیچ فشارضعیف((LV در اثر

نیروی مکانیکی شعاعی در چهار جهت……………………………………………………………. 88

شکل -6-6  تأثیرات تغییرات مکانیکی سیمپیچها روی پارامترهای مدل مشروح دررابطه با تغییر شکل

مکانیکی…………………………………………………………………………………………………… 89

شکل -7-6 اثر ماتریس اندوکتانس روی توابع تبدیل جریان زمین نسبت به ولتاژ ورودی در خصوص

تغییر شکل شعاعی……………………………………………………………………………………… 89

شکل -8-6 مقایسه نتایج محاسبات توابع تبدیل ولتاژ خروجی به ولتاژ ورودی در حوزه زمان، به

منظور بررسی حساسیت توابع تبدیل نسبت به تغییر شکل مکانیکی شعاعی سیم پیچ…….. 90

شکل -9-6 مقایسه نتایج محاسبات توابع تبدیل ولتاژ انتقالی حوزه فرکانس در ، به منظور بررسی

حساسیت توابع تبدیل نسبت به تغییر شکل مکانیکی شعاعی سیم پیچ…………………………. 90

شکل -10-6 درنظرگرفتن اتصال کوتاه بین حلقه ها در مدل مشروح……………………………… 93

شکل -11-6 تابع تبدیل ولتاژ انتقالی برای یک اتصال کوتاه بین انشعابهای 22و93………….. 23

شکل -12-6 تأثیر اتصال کوتاه بین حلقه های73 و 74 سیمپیچ روی تابع تبدیل ولتاژ انتقالی.. 94

شکل -1-7 مراحل عیب یابی ترانسفورماتور…………………………………………………………. 96

شکل -2-7 مراحل محاسبه ویژگی زمانی……………………………………………………………… 98

شکل -3-7 ساختار و ارتباطات نرون…………………………………………………………………… 99

شکل -4-7 فرم ساده شبکه پرسپترون با دو لایه میانی 101………………….. …………………………..

شکل -5-7 نمودار دو بعدی کلاسهای تشخیص داده شده توسط شبکه 104.. …………………………..

شکل -6-7 متوسط مجذور خطا برای داده های آموزشی…………………………………………. 106

چکیده

ترانسفورماتورها به تعداد زیاد در شبکههـای بـرق بـرای انتقـال و توزیـع انـرژی الکتریکـی در

مسافتهای طولانی مورد استفادهقرارمیگیرند.قابلیت اطمینان ترانسفوماتورها در این میان نقشی اساسی

در تغذیه مطمئن انرژی برق بازی میکند. بنابراین شناسائی هر چه سریعترعیبهای رخ داده در داخـل

یک ترانسفورماتورضروری به نظر می رسد.یکیازچنین عیبهائی که به سختی قابـل تـشخیص اسـت،

تغییرات مکانیکی در ساختار سیمپیچهای ترانسفورماتور است. اندازهگیـری تـابع تبـدیل تنهـا روش

کارامدی است که در حال حاضـر بـرای شناسـائی ایـن عیـب معرفـی شـده و بحـث روز محققـین

میباشد.استفاده روش مذکور با محدودیتها و مشکلاتی روبرو می باشـد کـه تـشخیص انـواع عیـوب

مختلف را به روش های متداول و مرسوم محدود ساخته اسـت.از ایـن رو امـروزه تحقیقـات بـر روی

استفاده از الگوریتمها و روش های هوشمندی متمرکز شده است که بتواند یـک تفکیـک پـذیری نـسبتا

خوبی بین انـواع عیـوب و صـدمات وارده بـه ترانـسفورماتور را فـراهم سـازد. در ایـن پایـان نامـه

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

چکیده
مقدمه 1
فصل – 1 توربین گازی 2
(1-1 مقدمه 3
(2-1 هدف اصلی نیروگاه 3
(3-1 مقدمه ای بر توربین گازی 4
(4-1 طراحی عمومی توربین گازی 4
(5-1 نیروگاه های گازیSGT-800 15
(6-1 کمپرسور و مجموعه Blow off و پره راهنما 16
(7-1 پدیده ضربه 19
(8-1 انواع حفاظت در سیستم Blow off 19
(9-1 سیستم حفاظتی توربین 20
(10-1 اجزای توربین گازی SGT-800 20
(11-1 محفظه احتراق 22
(12-1 راه اندازی یک نیروگاه 31
(13-1 خلاصه مراحل راه اندازی 31
(14-1 مراحل Shut Down 32
(15-1 اختلالات در سیستم توربین 32
(16-1 نتیجه گیری 33
فصل دوم : انواع پروتکل 35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1-2 مقدمه 36
(2-2 انواع پروتکل 36
(3-2 استاندارد لایه بندی 38
(4-2 نتیجه گیری 40
فصل سوم : سیستمهای کنترل گسترده 41
(1-3 اجزاء سیستم کنترل ترتیبی 42
(2-3 اجزاء سیستم کنترل آنالوگ 43
(3-3 سخت افزارسیستم DCS 44
(4-3 نرم افزار سیستم DCS 48
(5-3 سیستم اتوماسیون TELEPERMXP 50
PCS7 (6-3 53
(7-3 استفاده از DCS در کنترل ٨٠٠SGT- 68
(8-3 تریپ های اضطراری 69
(9-3 راه اندازی 70
(10-3 کنترل سرعت 72
(11-3 کنترل بار 72
(12-3 کنترل کننده IGV 73
(13-3 شتاب فشار هوای خروجی کمپرسور 73
74
(14-3 نتیجه گیری
75
SGT و معرفی نرم افزار WinCC
فصل چهارم: سیستم کنترلی -800
(1-4 مقدمه 76
(2-4 سیستم کنترلی توربینهای گازی 76
(3-4 شکل کلی سیستم کنترلی توربین و اجزاء آن 77
(4-4 بازیافت و انبار کردن 78
(5-4 پیکربندی سیستم کنترلی توربین گازی 79
HMI (Human Machine Interface) (6-4 80
PLC (7-4 مورد استفاده در سیستم کنترلی توربین گازی 81
(8-4 نتیجه گیری 93
فصل پنجم : PDCS 94
(1-5 مقدمه 95
(2-5 توضیحات سیستم برق 95
(3-5 سیستم تقسیم بندی بار برای GTG ها 99
(4-5 سیستم بارزدایی 103
(5-5 ژنراتورهای دیزل اضطرار 107
(6-5  سیستم نظارتی سیستم PDCS 107
(7-5 حفاظت رله 108
(8-5 نتیجه گیری 109
نتیجهگیری 110

 

 

 

 

 

فهرست مطالب
عنوان مطالب شماره صفحه
منابع و ماخذ 112
اختصارات 113

فهرست جدول ها

 

 

 

 

 

 

 

 

 

 

عنوان شماره صفحه
1-1  طبقه بندی توربینهای گازی شرکت زیمنس 5
2-1 اطلاعات مربوط به توربین های گازی زیمنس 11
1-2 مقادیر نمونه برای ژنراتور و تحریک 39
1-5 مقدار پارامترهای حالت فرضی 101
2-5 محاسبه پارامترهای تقسیم بندی بار 101

فهرست شکلها

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

عنوان شماره صفحه
1-1 نمای کلی از P&ID مربوط به SGT-800 6
2-1 محور توربین گازی SGT-800 12
1-3 بخشهای سیستم اتوماسیون TELEPERMXP 55
2-3 ساختار سیستم اتوماسیون AS620 57
3-3 طریقه اتصال Profibus به یکدیگر و به AP 58
4-3 اتصال ماژولهای FUM 59
5-3 ساختارسیستم اتوماسیون AS620T 60
6-3 سیستم مدیریت و عملیاتOM650 61
1-4 سیستم کنترلی SGT – 800 75
2-4 شکل کلی سیستم کنترلی SGT-800 و اجزاء آن 75
3-4 سیستم Back up و Pumps 79
4-4 پیکربندی سیستم کنترلی توربین گازی 79
5-4 نمایی از صفحه اصلی نرم افزارWinCC 81
6-4 صفحه ثبت و نمایش اطلاعات نرم افزار WinCC 82
7-4 منحنی و روند مصرف بار 83
9-4 نمایش سیستم روغنکاری توربین گازی 84
10-4 نمایش سیستم سوخت رسانی توربین گازی 85
11-4 پنجره عنوان نرم افزار WinCC 86
12-4 نمایی از PLC های سری S7-300 87
13-4 ماژول های PLC های سری S7-300 89
1-5 معماری PDCS و اتصالات آن به قسمت های کنترل شونده 97

چکیده :

در فصل اول پس از آشنایی با نیروگاه های توربین گازی به صورت نوعی توربین گـازی SGT-800 سـاخته شرکت زیمنس، مورد بررسی قرار میگیرد و قسمتها و پارامترهای قابل اندازه گیری این تـوربینهـا بررسـی میشوند. در فصل دوم تعاریفی همچون شبکه، پروتکل مطرح میشـود و همچنـین اسـتانداردهای لایـهبنـدی سیستمهای کنترلی به طور خلاصه مورد بررسی و در فصل سوم سیستم کنترل DCS بررسی میشوند.

در فصل چهارم سیستم کنترلی تـوربین هـای گـازی SGT-800 بررسـی و بـه معرفـی نـرم افـزار WinCC

تشریح میشود و در فصل پنجم به تشریح سیستمهای کنترلی PDCS میپردازیم در این فصل به بررسـی دو تکنیک از تکنیکهای مدیریت بار که در سیستمهای PDCS استفاده می شود اشاره می شود این دو تکنیـک شامل بارزدایی (load shedding) و تقسیم بار (load sharing) بین ژنراتورها میشود.

در پایان انواع PLC های استفاده شده در سیستمهای کنترلی SGT-800 و PDCS اشاره میشود.

مقدمه

در فصل اول پس از آشنایی با نیروگاه های توربین گازی به صورت نوعی توربین گازی ٨٠٠SGT- ساخته

شرکت زیمنس، مورد بررسی قرار میگیرد و قسمتها و پارامترهای قابل اندازه گیری این توربینها بررسی

میشوند. در فصل دوم تعاریفی همچون شبکه، پروتکل مطرح میشود و همچنین استانداردهای لایهبندی

سیستمهای کنترلی به طور خلاصه مورد بررسی و در فصل سوم سیستم کنترل DCS بررسی میشوند.

در فصل چهارم سیستم کنترلی توربین های گازی SGT-800 بررسـی و بـه معرفـی نـرم افـزار WinCC

تشریح میشود و در فصل پنجم به تشریح سیستمهای کنترلی PDCS میپردازیم در این فصل به بررسی

دو تکنیک از تکنیکهای مدیریت بار که در سیستمهای PDCS استفاده می شود اشاره مـی شـود ایـن دو

تکنیک شامل بارزدایی (load shedding) و تقسیم بار (load sharing) بین ژنراتورها  میشود.

در پایان انواع PLC های استفاده شده در سیستمهای کنترلی ٨٠٠SGT- و PDCS اشاره میشود.

فصل :1

توربینهای گازی

(1-1 مقدمه

گاز طبیعی یکی از منابع طبیعی است که موارد استفاده فراوانی در مصارف خانگی و صنعتی دارد. تولید انرژی برق نیز یکی از مصارف مهم گاز طبیعی است. از آنجا که کشور عزیزمان ایران نیز از این گنجینه ارزشمند بیبهره نیست، از اینرو بستر استفاده از این نعمت برای تولید انرژی برق فراهم آمده است.

توربینهای گازی، ابزاری برای رسیدن به این مهم هستند از اینرو شرکتهای مهم دنیا، برای به انحصار در

آوردن این صنعت شروع به رقابت کردند. شرکت زیمنس یکی از شرکتهای موفق، در این زمینه   می-

باشد، از این رو توربینهای گازی مختلفی که با تنوع در میزان مصرف و تولید برای انجام کار خاصی طراحی و ساخته میشوند.

SGT-800، یکی از محصولات این شرکت میباشد، و به علت اینکه قسمت زیادی از سوخت این توربین گاز طبیعی میباشد، از اینرو مطالعه و بررسی عملکرد و کنترل آن نیز از اهمیت خاصی برخوردار است. از اینرو، در این فصل، ابتدا به مقدمهای راجع به توربین های گازی و اجزای تشکیلدهنده آن پرداخته و

-2-1-2 کاربرد اتوماسیون ساختمان در قسمتهای مختلف ساختمان…………………………………….. 9

-2-2 کاربرد شبکه های کامپیوتری و صنعتی در اتوماسیون ساختمان…………………………………….. 10
-1-2-2 شبکه کامپیوتری چیست ؟………………………………………………………………………….. 10
-2-2-2 انواع شبکه های کامپیوتری 11…………………………………………………………………….. [2]
-3-2 اتوماسیون ساختمان سنتی در برابر اتوماسیون ساختمان مدرن:……………………………………. 11
-4-2 انواع پروتکلهای مورد استفاده در اتوماسیون ساختمان 12………………………………………….. [3]

-1-4-2 پروتکل فیلدباس 12………………………………………………………………………………….. [3]
-2-4-2 فیلدباسهای بکار رونده در اتوماسیون ساختمان………………………………………………….. 14
-3-4-2 شبکه محیطی کنترلر 14…………………….. [3] (CAN : Controller Area Network)
15…………………………………………………………………………………………….. [3] P‐NET -4-4-2

-5-2 پروتکلهای مخصوص اتوماسیون ساختمان……………………………………………………………….. 15
-1-5-2 پروتکل 15………………………………………………………………………………… [4] BACnet
-2-5-2 شبکه 19……………………………………………………………………………… [5] LonWorks
فصل سوم – خلاصه پایان نامهها، پروژه ها و مقالات مطالعه شده راجع به سمینار 23….. …………………………..
-1-3 پایان نامههای داخل کشور………………………………………………………………………………….. 23

-1-1-3 پایان نامه با عنوان “گرمایش ساختمان مسکونی با بهره گرفتن از انرژی خورشیدی در شهر
زاهدان” 23……………………………………………………………………………………………………….. [7]
-2-1-3 پایان نامه با عنوان ” حداقلسازی انرژی مصرفی برای گرمایش و سرمایش توسط بهینهسازی
راستای Direction ساختمان” 23………………………………………………………………………….. [8]
-2-3 پایان نامههای مرتبط با اصلاح دستگاه های ساختمان…………………………………………………. 24

-1-2-3 پایان نامه با عنوان “بررسی اثر پارامترهای موثر در کاهش مصرف انرژی یخچال فریزرهای
خانگی بدون برفک” 24………………………………………………………………………………………… [9]

فهرست مطالب

عنوان مطالب                                                                            شماره صفحه
-3-3 پروژه های مرتبط با مدیریت انرژی ساختمان……………………………………………………………. 25

-1-3-3 پروژه با عنوان “مدیریت مصرف انرژی در یک نمونه بیمارستان 400 تختخوابی” 25… [10]
-4-3 مقالات…………………………………………………………………………………………………………… 26
-1-4-3 مقالات ارائه شده در ژورنالها و کنفرانسهای 26……………………………………………….. IEEE
-2-4-3 بعضی از مقالات ارائه شده در 29…………………………………………………………. Elsevier

-3-4-3 مقالات ارائه شده در کنفرانسهای داخلی بهینهسازی مصرف سوخت و انرژی……………… 30
فصل چهارم – مفاهیم، اصول و روش های صرفهجویی و مدیریت انرژی 33…………………. …………………………..
-1-4 اهمیت و لزوم حرکت به سوی بهینهسازی مصرف انرژی در کشور 33…………………………. [21]
-1-1-4 مقدمه………………………………………………………………………………………………….. .. 33
-2-1-4 اهمیت صرفهجویی در مصرف انرژی 34………………………………………………………….. [1]

-2-4 مفاهیم، مشکلات، عوامل و گامهای صرفه جویی انرژی 35…………………………………………. [1]
-1-2-4 مفهوم اساسی صرفهجویی انرژی……………………………………………………………………. 35
-3-4 مفاهیم، اصول، عملیات، فازها و برنامه ریزی مدیریت انرژی 42……………………………………. [1]
-1-3-4 مفاهیم مدیریت انرژی…………………………………………………………………………………. 42

-2-3-4 اصول مدیریت انرژی…………………………………………………………………………………… 42
-3-3-4 عملیات مدیریت انرژی 44…………………………………………………………………………. [21]
-4-3-4 اصول عمومی مدیریت انرژی 44…………………………………………………………………. [21]
-5-3-4 برنامه ریزی برای مدیریت انرژی 47………………………………………………………………. [1]
-4-4 ممیزی انرژی 48…………………………………………………………………………………………… [21]

-1-4-4 تعریف ممیزی انرژی…………………………………………………………………………………… 48
-5-4 ماتریس مدیریت انرژی و جایگاه آن در برنامه ریزی…………………………………………………… 48
-6-4 مبانی مدیریت انرژی در ساختمان 51 …………………………………………………………………. [1]
-1-6-4 روشن شناسایی منابع اتلاف انرژی در ساختمانهای مسکونی…………………………………. 51
-2-6-4 تعیین استانداردهای بخشهای مختلف ساختمان 56…………………………………………… [1]

-7-4 امکان صرفه جویی انرژیهای الکتریکی و حرارتی………………………………………………………. 57
-1-7-4 مقدمه………………………………………………………………………………………………….. .. 57
-2-7-4 بهینهسازی سیستمهای تهویه مطبوع 58………………………………………………………… [1]
-3-7-4 توصیه های بهینهسازی مصرف انرژی در تأسیسات گرمایش، حرارت و آبگرم مصرفی……. 59

-4-7-4 بهینهسازی انرژی در سیستمهای روشنایی 59………………………………………………… [21]
-8-4 خلاصهای از راهکارهای بهینهسازی مصرف انرژی در ساختمان 67……………………………… [22]
-1-8-4 اصلاح مشخصات حرارتی پوشش خارجی ساختمان…………………………………………….. 67
-2-8-4 اصلاح سیستم روشنایی و کاهش مصرف انرژی الکتریکی……………………………………… 69

فهرست مطالب

……………………….

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

عنوان مطالب شماره صفحه
-3-8-4 اصلاح سیستمهای گرمایش و سرمایش ………………………………………………….. 69
-1-5 مقدمه ………………………….. BMS ) و مدیریت انرژی ساختمان () 72
فصل پنجم- سیستمهای مدیریت ساختمان ( 72
………………………………………………………………
-1-1-5 اهمیت اتوماسیون ساختمان در بهینهسازی مصرف انرژی …………………………. [21] 72
-2-1-5 مقدمات …………………………..[6] ………………………………………………….. 76
-2-5 سیستمهای اتوماسیون و مدیریت ساختمان ………………………………………………[23] 77
-1-2-5 تاریخچه ………………………….. ………………………….. …………………………. 77
-2-2-5 سیستمهای اتوماسیون ساختمان ………………………………………….. [23] (BAS) 78
-3-2-5 سیستم مدیریت انرژی ساختمان ……………………………………….. [23] (BEMS) 79
-3-5 سیستم مدیریت انرژی ساختمان …………………………………………………….(BEMS) 80
-1-3-5 سیستم مدیریت ساختمان ……………………………………………….. [24] (BMS) 80
-2-3-5 سیستم مدیریت انرژی ساختمان ……………………………………………… (BEMS) 80
-3-3-5 ساختار، پیادهسازی، وظایف و نحوه عملکرد ………………………….. [23] BMS …… 81
-4-5 استاندارد در سیستمهای اتوماسیون ساختمان ……………………………………………[23] 86
-1-4-5 مقدمه………………………….. ………………………….. ………………………….. .. 86
-2-4-5 سطوح سیستم اتوماسیون ساختمان ………………………………………………..[23] 87
-5-5 پروتکلهای بکار رفته در سیستمهای مدیریت ساختمان ……………………………………….. 89
-1-5-5 انواع پروتکلهای مورد استفاده در اتوماسیون صنعتی و ساختمان ………………….. [23] 89
-2-5-5 بررسی مختصری از یکی از پروتکلهای استاندارد اتوماسیون ساختمان ……………….[3] 90
-6-5 مزایای سیستم مدیریت ساختمان ………………………….. [23] ………………………….. . 91
-1-6-5 شرح بعضی از مزایای سیستم مدیریت انرژی ساختمان ………………………….. [23] .. 92
-2-6-5 صرفه جویی و مدیریت انرژی در سیستمهای مدیریت ساختمان…………………………. 94
-7-5 معرفی زیر سیستمهای موجود در سیستم مدیریت انرژی ساختمان ………………………….. . 95
-1-7-5 سیستم روشنایی و کنترل آن ………………………….. [23] …………………………. 96
-2-7-5 سیستم حفاظت و امنیت ………………………………………………….(Security) 100
-3-7-5 سیستمهای کنترل گرمایش، سرمایش و تهویه مطبوع …………………..[25] HVAC 101
-4-7-5 کنترل دستیابی …………………………..[25] ………………………………………. 104
-5-7-5 مانیتورینگ ویدئویی ………………………….. [25] ………………………….. 104 ……..
-6-7-5 آلارمهای نشتی ………………………….. [25] ………………………………………. 105
-7-7-5 سیستم ارتباطات و مخابرات جامع ………………………………………………..[23] 105
-8-5 عملکردهای مدیریت انرژی در سیستمهای مدیریت انرژی ساختمان …………………… [25] 106
-1-8-5 بهینه سازی زمان استفاده از تجهیزات …………..(Optimization of Start/Stop) 106

فهرست مطالب

عنوان مطالب                                                            شماره صفحه
-2-8-5 سیکل وظیفه 106…………………………………………………………………….. (Duty Cycle)

-3-8-5 محدودسازی تقاضای حداکثر بار 106……………………………….. …………………………..
-4-8-5 برنامه زمان بندی بر حسب ساعت روز(107…………………. (Time of Day Scheduling
-5-8-5 برنامه زمان بندی بر حسب تاریخ 107…………………………… (Calender Scheduling)
-6-8-5 برنامه زمانبندی تعطیلات 107………………………………………. (Holiday Scheduling)
-7-8-5 برنامه زمانبندی موقتی 107…………………………………….. (Temporary Scheduling)
-8-8-5 صرفهجوئی خودکار با بهره گرفتن از نور طبیعی در طول روز (Automatic Day Light
108…………………………………………………………………………………………………………. Saving)
-9-8-5 کنترل عقب کشیدن شبانه 108……………………………….. (Night Set back Control)
-10-8-5 تعویض آنتالپی 108………………………………………………. (Enthalpy Switch Over)
-11-8-5 کنترل سرعت فن 108………………………………. (Fan Speed CFM Control) CFM
-12-8-5 برنامه زمان بندی چیلر / بویلر………………………………………………………………… .. 108
نتیجه گیری و پیشنهادات 111…………………………………………………………………….. …………………………..
نتیجه گیری…………………………………………………………………………………………………………. 111

پیشنهادات…………………………………………………………………………………………………………… 111
منابع و مأخذ……………………………………………………………………………………………………………. 114
منابع و مأخذ فارسی………………………………………………………………………………………………. 114
منابع و مأخذ لاتین………………………………………………………………………………………………… 115
116………………………………………………………………………………………………………….. Abstract:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

فهرست جدولها
عنوان شماره صفحه
جدول -1-2 انواع فیلدباسهای استاندارد و استاندارد مرتبط با آنها 13
جدول -2-2 مقایسه لایه های BACnet با مدل استاندارد OSI 18
جدول -1-4 رابطه بین اقدامات صرفه جویی انرژی و بخش کاری 38
جدول -2-4 تشریح سه گام صرفه جویی انرژی 40
جدول -3-4 راه حلهای صرفه جویی انرژی 43
جدول -4-4 اصول عمومی مدیریت انرژی 45
جدول -5-4 نمونه ضرایب انتقال حرارت جداره های خارجی ساختمان مربوط به قوانین 52
ساختمان کشورهای اروپائی
جدول -6-4 مقاومت حرارتی سطوح داخلی و خارجی 53
جدول -7-4 مقادیر استاندارد شدت روشنایی اماکن و فضاها با کاربری های مختلف 55
جدول -8-4 میزان استاندارد مصرف انرژی در برخی از وسایل خانگی 57
جدول-9-4 مقایسه بین لامپهای تنگستن-آرگون عادی و لامپهای فلورسنت فشرده با بالاست
های فرکانس بالا و معمولی 60
جدول -10-4 محل مناسب برای بکاربردن انواع سنسورهای حضور افراد 63
جدول-1-5 پروتکلهای مهم بکار گرفته شده در اتوماسیون صنعتی و ساختمان 90
جدول -2-5 خلاصه نکات طراحی کنترل روشنایی 101

فهرست شکلها

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

عنوان شماره صفحه
شکل -1-2 کار با چند ایستگاه کاری برای کنترل دستگاه های ساخت چند شرکت مختلف 15
شکل -2-2 قرارگرفتن تحت الزامات یک سازنده خاص 16
شکل -3-2 اعمال کنترل متمرکز بر سیستمهای ساخت چند سازنده از طریق یک پروتکل استاندارد مانند 16
BACnet 18
شکل -4-2 نمای کلی یک شبکه BACnet
شکل -5-2 کاربردهای مختلف BACnet 18
شکل -6-2 یک شبکه BACnet ساده 18
شکل -1-4 بحران انرژی در سال 1973 34
شکل -2-4 وابستگی نشت بخار به فشار بخار و قطر حفره نشت 36
شکل -3-4 سه گام صرفه جویی انرژی 39
شکل -4-4 کمیته مدیریت انرژی در کارخانه 48
شکل -5-4 ماتریس مدیریت انرژی 50
شکل-6-4 راه حلهای اجرایی فرایند صرفه جویی انرژی در سطح یک کارخانه 51
شکل -7-4 شاخص مصرف انرژی قبل و بعد از انجام اقدامات بهینه سازی مصرف انرژی 58
شکل -8-4 سیستمهای کنترل 61
شکل -9-4 سنسورهای مافوق صوت 62
شکل -10-4 سنسورهای مادون قرمز 62
شکل -11-4 افت نور خروجی سیستم روشنایی در طول زمان 64
شکل -12-4 افت پیشبینیشده نور در نتیجه کثیف شدن داخل بدنه چراغ در یک محیط اداری تمیز 65
شکل -16-4 ترتیب قرار گرفتن چراغها باید موازی پنجره ها باشد 66
شکل -17-4 الف و ب- ترتیب قرار گرفتن چراغها بر روی یک خط از میزهای کار 67
شکل -1-5 کاربرد سیستم BMS در یک ساختمان 73
شکل -2-5 اتوماسیون ساختمان 74
شکل -3-5 کاربرد Gateway به عنوان پلی بین پروتکلها 77
شکل -4-5 پانل کنترل مرکزی 78
شکل -5-5 نمای کلی از یک سیستم اتوماسیون ساختمان 78
شکل -6-5 ساختار هرمی مدیریت ساختمان 81
شکل -7-5 یک صفحه انتخاب ماتریسی 83

چکیده:

مزایای بهره برداری از انرﮊی باد……………………………………………………………………………………… 7

پتانسیل باد در ایران………………………………………………………………………………………………………… 7

توربینهای بادی و انواع آن………………………………………………………………………………………………. 8

انواع کاربرد توربینهای بادی……………………………………………………………………………………………. 8

انرﮊی خورشید……………………………………………………………………………………………………………… 8

کاربردهای انرﮊی خورشیدی…………………………………………………………………………………………….. 9

کاربردهای نیروگاهی………………………………………………………………………………………………………… 9

کاربردهای غیر نیروگاهی…………………………………………………………………………………………………. 9

مصارف و کاربردهای فتوولتائیک……………………………………………………………………………………. 9

انرﮊی های تجدیدناپذیر………………………………………………………………………………………………….. 10

انرﮊی گاز…………………………………………………………………………………………………………………… 10

ذخایر و میادین گاز طبیعی……………………………………………………………………………………………… 10

شبکه گذاری گاز طبیعی در ایران…………………………………………………………………………………….. 10

انشعابات و مصرف کنندگان گاز طبیعی…………………………………………………………………………….. 11

انرﮊی نفت………………………………………………………………………………………………………………….. 12

فصل دوم:

انواع تولید پراکنده 14…………………………………………………………………………………… …………………………………………………………………..

مقدمه…………………………………………………………………………………………………………………………….. 15

انواع تولید پراکنده…………………………………………………………………………………….. 16

توربینهای گازی احتراقی…………………………………………………………………………….. 16

توربینهای کوچک………………………………………………………………………………………………… 17

سلولهای سوختی…………………………………………………………………………………………………. 19

توربینهای بادی……………………………………………………………………………………………….. 20

شبکه های فتوولتاییک…………………………………………………………………………………… 22

وسایل ذخیره انرﮊی……………………………………………………………………………………….. 23

نیروگاه های انرﮊی جزر و مد…………………………………………………………………….. 24

نیروگاه های ترمو الکتریک…………………………………………………………………………. 24

نیروگاه های ترمیونیک…………………………………………………………………………………… 24

نیروگاه های بیوماس………………………………………………………………………………………… 25

نیروگاه های مبدل انرﮊی خورشیدی – حرارتی – الکتریکی………… 26

نیروگاه تولید همزمان برق، گرما و سرما………………………………………. 27

نیروگاه های آبی کوچک…………………………………………………………………………………… 28
دیزل ﮊنراتور……………………………………………………………………………………………………. 28
چرخ لنگر……………………………………………………………………………………………………………… 28
موتورهای رفت و برگشتی…………………………………………………………………………….. 28

تعاریف مربوط به تولید پراکنده…………………………………………………………. 29
مکان تولید پراکنده……………………………………………………………………………………. 29
هدف تولید پراکنده………………………………………………………………………………………. 29
میزان تولید در تولید پراکنده……………………………………………………………. 29
محدودیتهای عملکردی تولید پراکنده………………………………………………….. 29

کاربردهای تولید پراکنده……………………………………………………………………….. 31
نحوه اتصال منابع تولید پراکنده به شبکه…………………………………… 31
تقسیم بندی های مختلف تولید پراکنده…………………………………………….. 32
تلفات توان در شبکه های توزیع شعاعی……………………………………………. 34

نتیجه گیری………………………………………………………………………………………………………. 34

فصل سوم:

تقسیم بندی اقلیمی ایران و انتخاب ده شهر نمونه…………………………………………………………….. 35

مقدمه………………………………………………………………………………………………………………. 36

تقسمیات اقلیمی در جهان……………………………………………………………………… 36
تقسیمات اقلیمی در ایران…………………………………………………………………… 37

روش اولگی……………………………………………………………………………………………………. 40

بحث و نتیجهگیری……………………………………………………………………………………. 41

فصل چهارم:

تعیین تابع هدف…………………………………………………………………………………………………………. 47

مقدمه………………………………………………………………………………………………………………. 48

دسترسی تجاری…………………………………………………………………………………………….. 48

هزینه های اولیه ونصب…………………………………………………………………………. 49

ضریب کارکرد………………………………………………………………………………………………. 50

محاسبه مقدار قدرت الکتریکی تولیدی توسط پنلهای خورشیدی و ضریب کارکرد………………………………………………………………………………………………………… 50

مقدمه……………………………………………………………………………………………………………… 50

تشعشعات خورشید بیرون از محیط زمین……………………………………….. 51

ثابت خورشیدی…………………………………………………………………………………………… 52

مقدار شدت تابش خورشید در خارج از اتمسفر زمین و برروی سطح افقی 52                                                                                                      …………………………………………
زاویه انحراف…………………………………………………………………………………………… 53
متوسط ضریب صافی ماهیانه……………………………………………………………….. 53
ضریب صافی لحظهای…………………………………………………………………………………. 53
تابش پراکنده و مستقیم……………………………………………………………………. 53

تابش خورشید توسط صفحه ای که با شیب β  که رو به جنوب نصب شده است………………………………………………………………………………………………………………… 54
محاسبه ضریب کارکرد در توربین بادی……………………………………….. 54
متوسط سرعت باد……………………………………………………………………………………… 55
واریانس……………………………………………………………………………………………………… .55

پارامترهای K و 55……………………………………………………………………………….. C
تولید متوسط قدرت توربین………………………………………………………………. 56
ضریب کارکرد……………………………………………………………………………………………. 56

هزینه های بهره برداری ‐ تعمیر – نگهداری………………………… 57
هزینه سوخت……………………………………………………………………………………………….. 57

هزینه برق و بیان تابع هدف………………………………………………………….. 57

فصل پنجم:

الگوریتم و فلوچارت برنامه…………………………………………………………………………………….. 59

فلوچارت محاسبه ضریب کارکرد در سیستم فتو ولتائیک……….. 60
فلوچارت محاسبه ضریب کارکرد در سیستم توربین بادی……….. 62

فلوچارت محاسبه 64…………………………………………………………………………….. COE

نتایج حاصل از تابع هدف………………………………………………………………….. 66

فصل ششم:

اصول مدلسازی سیستمهای قدرت کوچک توسط 73………………………………………… HOMER
مقدمه ای بر مدلسازی سیستمهای قدرت کوچک 1 توسط 74  HOMER
شبیه سازی…………………………………………………… …………………………………………… 75
بهینه سازی…………………………………………………………………………. .. ……………. 79

تحلیل حساسیت…………………………………………………………………………. ……………. 83

بررسی عدم قطعیت ها………………………………………………………….. …………….. 84

تحلیل حساسیت مجموعه اطلاعات ساعت به ساعت…….. ……………. .     85

مدلسازی اقتصادی…………………………………………………………………………….. ….. 86

فصل هفتم:

شبیه سازی با بهره گرفتن از نرم افزار homer برای شهر نمونه تهران 89……………………………………………………………………………………………………….. ………………………………

فصل هشتم:

نتیجه گیری و ارائه پیشنهادات…………………………………………………………………………………….. 101

پیوست :1

اصول همسان سازی هزینه ها و فایده ها 104………………………………………………………………. ………

پیوست:2

آمار هواشناسی……………………………………………………………………………………………………. 108

پیوست :3

نرم افزار برنامه…………………………………………………………………………………….. ……….. 119

منابع و ماخذ……………………………………………………………………………………………………. 124

چکیده انگلیسی 128……………………………………… ……………………………………………………………………………………………………………….

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ردیف جدول عنوان صفحه
1‐1 ذخایر قابل استحصال گاز طبیعی کشور در سال 1381 10
2‐1 مقدار شبکه گذاری انجام شده توسط شرکتهای گازرسانی استانی 12
3‐1 ذخایر هیروکربوری مایع ایران 14
4‐1 میزان ذخایر و شاخص جایگزینی ذخایر به تولید کشور در سالهای 80‐81 14
2‐1 تقسیم بندی تولید پراکنده 32
2‐2 تقسیم بندی تولید پراکنده 33
2‐3 دسته بندی تولید پراکنده بر اساس مصرف سوخت 33
3‐1 تقسیمات نه گانه اقلیمی در ایران 41
3‐2 مشخصات شهرهای انتخاب شده 41
3‐3 شرایط اقلیمی شهر اصفهان در ماه های مختلف سال 42
3‐4 شرایط اقلیمی شهر اهواز در ماه های مختلف سال 42
3‐5 شرایط اقلیمی شهر بندر عباس در ماه های مختلف سال 43
3‐6 شرایط اقلیمی شهر تبریز در ماه های مختلف سال 43
3‐7 شرایط اقلیمی شهر تهران در ماه های مختلف سال 44
3‐8 شرایط اقلیمی شهر رشت در ماه های مختلف سال 44
3‐9 شرایط اقلیمی شهر شیراز در ماه های مختلف سال 45
3‐10 شرایط اقلیمی شهر کرمان در ماه های مختلف سال 45
3‐11 شرایط اقلیمی شهر مشهد در ماه های مختلف سال 46
3‐12 شرایط اقلیمی شهر همدان در ماه های مختلف سال 46
4‐1 دسترسی تجاری انواع تکنولوﮊی DG 48
4‐2 مشخصات انواع DG مورد مطالعه 58

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ردیف شکل عنوان صفحه
2‐1 سیستم بازیافت حرارت 17
2‐2 شکل ساده یک میکرو توربین 18
2‐3 مراحل عملکرد پیلهای سوختی 19
2‐4 اجزاﺀ توربین بادی 20
2‐5 نحوه عملکرد سیستمهای فتوولتائیک 22
2‐6 مراحل عملکردی موتورهای رفت و برگشتی 29
2‐7 شبکه شعاعی معمولی 34
4‐2 زمین در گردش سالانه خودش بدور خورشید 51
4‐2 نمودار تغییرات Gon بر حسب روزهای سال 52
4‐3 c به ازاﺀ پارامتر K 55
u
5‐1 فلوچارت محاسبه cf در فتوولتائیک 61
5‐2 فلوچارت محاسبه ضریب کارکرد توربینهای بادی 63
5‐3 فلوچارت محاسبه هزینه COE 65
5‐4 مقدار COE انواع DG در شهر اصفهان 66
5‐5 مقدار COE انواع DG در شهر اهواز 66
5‐6 مقدار COE انواع DG در شهر بندرعباس 67
5‐7 مقدار COE انواع DG در شهر تبریز 67
5‐8 مقدار COE انواع DG در شهر تهران 68
5‐9 مقدار COE انواع DG در شهر رشت 68
5‐10 مقدار COE انواع DG در شهر شیراز 69
5‐11 مقدار COE انواع DG در شهر کرمان 69
5‐12 مقدار COE انواع DG در شهر مشهد 70
5‐13 مقدار COE انواع DG در شهر همدان 70
5‐14 مقایسه COE باد در ده شهر نمونه 71
5‐15 مقایسه COE فتوولتائیک در ده شهر نمونه 71
5‐16 مقایسه CF توربین بادی در ده شهر نمونه 72
5‐17 مقایسه CF فتوولتائیک در ده شهر نمونه 72
6‐1 ارتباط بین ارکان مختلف نرم افزار HOMER 75
6‐2 نمونه هایی از سیستم های قدرت کوچک شبیه سازی شده با HOMER 77
6‐3 نتایج نمونه از تحلیل ساعتی 79
6‐4 سیستم بادی‐ دیزلی 80
6‐5 فضای جست و جو که شامل 140 حالت مختلف است 81
6‐6 نتایج کلی شبیه سازی که طبق NPC مرتب شده اند 82
6‐7 نتایج دسته بندی شده بهینه سازی 82

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-4-1 اﻫﺪاف……………………………………………………………………………………………………………… 9

-5-1 ﺳﺎﺧﺘﺎر ﭘﺎﻳﺎن ﻧﺎﻣﻪ……………………………………………………………………………………………… 10

ﻓﺼﻞ دوم – ﻫﻤﺎﻫﻨﮕﻲ ﺣﻔﺎﻇﺘﻲ ﺳﻴﺴﺘﻢﻫﺎی ﺗﻮزﻳﻊ……………………………………………………………….. 12

ﻣﻘﺪﻣﻪ…………………………………………………………………………………………………………………… 12

-1-2 ﺣﻔﺎﻇﺖ ﺳﻴﺴﺘﻢ ﻗﺪرت………………………………………………………………………………………. 12

-1-1-2 ﻛﻠﻴﺎت………………………………………………………………………………………………….. .. 12

-2-1-2 ﻧﺎﺣﻴﻪ ﺑﻨﺪی ﺣﻔﺎﻇﺘﻲ………………………………………………………………………………….. 14

-2-2 ﻣﻔﻬﻮم ﻫﻤﺎﻫﻨﮕﻲ ﺣﻔﺎﻇﺘﻲ…………………………………………………………………………………… 15

-3-2 اﻫﺪاف ﺣﻔﺎﻇﺖ ﺷﺒﻜﻪ ﻗﺪرت………………………………………………………………………………… 16

-4-2 اﻟﺰاﻣﺎت ﻃﺮاﺣﻲ ﺳﻴﺴﺘﻢ ﺣﻔﺎﻇﺖ…………………………………………………………………………… 16

-1-4-2 ﺣﻔﺎﻇﺖ ﺳﻴﺴﺘﻢﻫﺎی ﺗﻮزﻳﻊ…………………………………………………………………………… 17

-5-2 ﻣﺮوری ﺑﺮ ادوات ﺣﻔﺎﻇﺘﻲ ﺑﻜﺎر روﻧﺪه در ﺷﺒﻜﻪﻫﺎی ﺗﻮزﻳﻊ 17……………………………………… [25]

-1-5-2 رﻟﻪ ﺟﺮﻳﺎن زﻳﺎد………………………………………………………………………………………….. 17

-2-5-2 ﻓﻴﻮز……………………………………………………………………………………………………….. 17

-3-5-2 رﻟﻪﻫﺎ………………………………………………………………………………………………………. 18

-6-2 ﻫﻤﺎﻫﻨﮕﻲ ﺑﻬﻴﻨﻪ رﻟﻪﻫﺎی ﺣﻔﺎﻇﺘﻲ………………………………………………………………………….. 23

-1-6-2 اﺻﻮل ﺑﻬﻴﻨﻪﺳﺎزی………………………………………………………………………………………. 23

-2-6-2 ﺗﺎﺑﻊ ﻫﺪف………………………………………………………………………………………………… 23

-3-6-2 ﻗﻴﻮد ﻫﻤﺎﻫﻨﮕﻲ رﻟﻪﻫﺎی ﺟﺮﻳﺎن زﻳﺎد ﺟﻬﺖ دار…………………………………………………….. 24

ﻓﻬﺮﺳﺖ ﻣﻄﺎﻟﺐ

ﻋﻨﻮان ﻣﻄﺎﻟﺐ                                                                           ﺷﻤﺎره ﺻﻔﺤﻪ
-4-6-2 ﻫﻤﺎﻫﻨﮕﻲ ﺑﻬﻴﻨﻪ رﻟﻪﻫﺎ………………………………………………………………………………….. 24

ورودیﻫﺎ ﻳﺎ ﭘﺎراﻣﺘﺮﻫﺎی ﻫﻤﺎﻫﻨﮕﻲ:………………………………………………………………………………. 25

-5-6-2 اﻧﺘﺨﺎب ﻣﺸﺨﺼﻪ ﻋﻤﻠﻜﺮد رﻟﻪﻫﺎ……………………………………………………………………….. 26

-6-6-2 اﻧﺘﺨﺎب ﻣﺸﺨﺼﺎت رﻟﻪ…………………………………………………………………………………. 27

ﻓﺼﻞ ﺳﻮم- ﺑﺮرﺳﻲ ﺗﺄﺛﻴﺮات ﺗﻮﻟﻴﺪ ﭘﺮاﻛﻨﺪه ﺑﺮ ﻫﻤﺎﻫﻨﮕﻲ ﺣﻔﺎﻇﺘﻲ و اﻧﺘﺨﺎب ﻳﻚ ﻃﺮح ﺣﻔﺎﻇﺘﻲ ﻣﻨﺎﺳﺐ ﺑﺮای

ﻫﻤﺎﻫﻨﮕﻲ رﻟﻪﻫﺎ در ﺣﻀﻮر ﺗﻮﻟﻴﺪات ﭘﺮاﻛﻨﺪه 29………………………………………………….. …………………………..

-1-3 ﻣﻘﺪﻣﻪ…………………………………………………………………………………………………………… 29

-1-1-3 واﺣﺪﻫﺎی ﺗﻮﻟﻴﺪ ﭘﺮاﻛﻨﺪه……………………………………………………………………………….. 29

-2-3 ﻣﻮارد ﺗﺄﺛﻴﺮات ﺗﻮﻟﻴﺪات ﭘﺮاﻛﻨﺪه روی ﻫﻤﺎﻫﻨﮕﻲ ﺣﻔﺎﻇﺘﻲ……………………………………………… 30

-1-2-3 اﻫﻤﻴﺖ ﺗﺄﺛﻴﺮات ﺗﻮﻟﻴﺪات ﭘﺮاﻛﻨﺪه ﺑﺮ روی ﺣﻔﺎﻇﺖ ﺷﺒﻜﻪ ﺗﻮزﻳﻊ……………………………… . 30

-2-2-3 ﺗﻐﻴﻴﺮ ﺳﻄﺢ اﺗﺼﺎل ﻛﻮﺗﺎه 35] ﺗﺎ 31………………………………………………………………. [38

-3-2-3 ﺟﻠﻮﮔﻴﺮی از ﻋﻤﻠﻜﺮد رﻟﻪ ﺟﺮﻳﺎن زﻳﺎد 35] ﺗﺎ 31………………………………………………… [37

-4-2-3 ﺗﺮﻳﭗ دادن اﺷﺘﺒﺎه رﻟﻪﻫﺎ………………………………………………………………………………. 32

-5-2-3 ﺟﺰﻳﺮهای ﺷﺪن ﻧﺎﺧﻮاﺳﺘﻪ…………………………………………………………………………….. 33

-6-2-3 ﺗﺄﺛﻴﺮات ﺣﻀﻮر DG ﺑﺮ ﺑﺎزﺑﺴﺖ اﺗﻮﻣﺎﺗﻴﻚ…………………………………………………………… 33

-3-3 ﺗﺄﺛﻴﺮات ﺣﻀﻮر DG ﺑﺮ ﻫﻤﺎﻫﻨﮕﻲ ادوات ﺣﻔﺎﻇﺘﻲ……………………………………………………….. 34

-1-3-3 ﻓﻠﺴﻔﻪ ﺣﺎﻛﻢ ﺑﺮ ﻫﻤﺎﻫﻨﮕﻲ ﺣﻔﺎﻇﺘﻲ در ﺷﺒﻜﻪﻫﺎی ﺗﻮزﻳﻊ ﺳﻨﺘﻲ……………………………… . 34

-2-3-3 ﻫﻤﺎﻫﻨﮕﻲ رﻟﻪ – رﻟﻪ 35…………………………………………………………………………….. [36]

–2-3-3 ﻣﺜﺎﻟﻲ از ﺗﺄﺛﻴﺮات ﺗﻮﻟﻴﺪ ﭘﺮاﻛﻨﺪه روی ﻫﻤﺎﻫﻨﮕﻲ ﺣﻔﺎﻇﺘﻲ………………………………………. 35

-3-3-3 ﺑﺮرﺳﻲ ﺣﺎﻟﺖﻫﺎی ﻣﺨﺘﻠﻒ اﺗﺼﺎل DG ﻫﺎ ﺑﻪ ﻓﻴﺪر ﺷﻌﺎﻋﻲ ﻧﻤﻮﻧﻪ……………………………….. 36

–4-3-3 ﻧﺘﻴﺠﻪﮔﻴﺮی……………………………………………………………………………………………… 40

-4-3 اﻟﺰاﻣﺎت ﻫﻤﺎﻫﻨﮕﻲ ﺣﻔﺎﻇﺘﻲ در ﺣﻀﻮر ﺗﻮﻟﻴﺪات ﭘﺮاﻛﻨﺪه……………………………………………….. 41

-1-4-3 ﻣﻘﺪﻣﻪ………………………………………………………………………………………………….. .. 41

-2-4-3 اﻟﺰاﻣﺎت ﻫﻤﺎﻫﻨﮕﻲ……………………………………………………………………………………….. 41

-3-4-3 اﻟﺰاﻣﺎت ﻛﻠﻲ اﺗﺼﺎل DG ﺑﻪ ﺷﺒﻜﻪ ﻗﺪرت 42…………………………………………………. [38]

-5-3 راﻫﻜﺎرﻫﺎی ﻫﻤﺎﻫﻨﮕﻲ ﺣﻔﺎﻇﺘﻲ در ﺷﺒﻜﻪﻫﺎی ﺣﻠﻘﻮی…………………………………………………… 43

ﻓﻬﺮﺳﺖ ﻣﻄﺎﻟﺐ

ﻋﻨﻮان ﻣﻄﺎﻟﺐ                                                               ﺷﻤﺎره ﺻﻔﺤﻪ
-1-5-3 روش ﺗﻮﭘﻮﻟﻮژﻳﻜﻲ……………………………………………………………………………………….. 44

-2-5-3 ﺣﻔﺎﻇﺖ ﺗﻄﺒﻴﻘﻲ…………………………………………………………………………………………. 44

-6-3 راﻫﻜﺎرﻫﺎی اراﺋﻪ ﺷﺪه ﺑﺮای ﻫﻤﺎﻫﻨﮕﻲ ﺣﻔﺎﻇﺘﻲ ﺷﺒﻜﻪﻫﺎی ﺗﻮزﻳﻊ در ﺣﻀﻮر ﺗﻮﻟﻴﺪات ﭘﺮاﻛﻨﺪه…… 45

-1-6-3 راﻫﻜﺎرﻫﺎی ﻃﺮﺣﻬﺎی ﻫﻤﺎﻫﻨﮕﻲ ﺣﻔﺎﻇﺘﻲ در ﺣﻀﻮر DG ﺑﺪون ﻛﺎﻫﺶ اﺛﺮات 45……. DG

-1-1-6-3 ﺣﻔﺎﻇﺖ ﮔﺴﺘﺮده (ﺣﻔﺎﻇﺖ ﺗﻄﺒﻴﻘﻲ ﮔﺴﺘﺮده)……………………………………………….. 45

-2-1-6-3 رﻟﻪﮔﺬاری ﺗﻄﺒﻴﻘﻲ 46…………………………………………………………………………… [38]

-3-1-6-3 ﻫﻤﺎﻫﻨﮕﻲ ﺣﻔﺎﻇﺘﻲ ﺑﻪ ﺻﻮرت ﭼﻨﺪ ﻋﺎﻣﻠﻪ……………………………………………………… 48

-2-6-3 راﻫﻜﺎرﻫﺎی ﻣﺒﺘﻨﻲ ﺑﺮ ﻛﺎﻫﺶ ﻳﺎ ﺣﺬف اﺛﺮات اﻋﻤﺎل DG ﺑﺮ ﻫﻤﺎﻫﻨﮕﻲ ﺣﻔﺎﻇﺘﻲ ﺷﺒﻜﻪ

ﺗﻮزﻳﻊ………………………………………………………………………………………………………………….. 48

-7-3 اﻧﺘﺨﺎب ﻃﺮح ﺣﻔﺎﻇﺘﻲ ﺑﺮای ﻫﻤﺎﻫﻨﮕﻲ ﺣﻔﺎﻇﺘﻲ ﺑﻬﻴﻨﻪ در ﺣﻀﻮر ﺗﻮﻟﻴﺪات ﭘﺮاﻛﻨﺪه………………. 49

ﻓﺼﻞ ﭼﻬﺎرم – ﭘﻴﺎدهﺳﺎزی و ﻧﺘﺎﻳﺞ ﻃﺮح ﻫﻤﺎﻫﻨﮕﻲ رﻟﻪﻫﺎی ﺷﺒﻜﻪ ﺗﻮزﻳﻊ 51………………… …………………………..

در ﺣﻀﻮر ﺗﻮﻟﻴﺪات ﭘﺮاﻛﻨﺪه…………………………………………………………………………………………….. 51

-1-4 ﻣﻘﺪﻣﻪ…………………………………………………………………………………………………………… 51

-2-4 اﻧﺘﺨﺎب ﺷﺒﻜﻪ ﺗﻮزﻳﻊ………………………………………………………………………………………….. 51

-1-2-4 ﻣﻌﺮﻓﻲ ﺷﺒﻜﻪ ﺗﻮزﻳﻊ ﻧﻤﻮﻧﻪ 51…………………………………………………………………….. [46]

-3-4 اﻧﺘﺨﺎب ﻧﺮماﻓﺰارﻫﺎی ﺷﺒﻴﻪﺳﺎزی……………………………………………………………………………. 52

-1-3-4 اﻧﺘﺨﺎب ﻧﺮماﻓﺰار ﺑﺮای اﻧﺠﺎم ﭘﺮوژه……………………………………………………………………. 52

53……………………………………………………………………………………………. PSCAD -1-1-3-4

CYMTCC -2-1-3-4 و 53…………………………………………………………………………….. PSAF

54……………………………………………………………………………………….. DigSilent -3-1-3-4

54………………………………………………………………………… ETAP (version 5) -4-1-3-4

-5-1-3-4 ﺑﺮﻧﺎﻣﻪﻧﻮﻳﺴﻲ ﻣﺴﺘﻘﻴﻢ در 54……………………………………………………….. MATLAB

-2-3-4 اﻧﺘﺨﺎب ﻧﺮم اﻓﺰار………………………………………………………………………………………… 55

-4-4 ﺷﺒﻴﻪﺳﺎزی ﺳﻴﺴﺘﻢ ﺗﻮزﻳﻊ ﻧﻤﻮﻧﻪ…………………………………………………………………………… 55

-1-4-4 ﻫﻤﺎﻫﻨﮕﻲ ﺑﻬﻴﻨﻪ ﺑﺎ 56……………………………………………………………………….. MATLAB

ﻓﻬﺮﺳﺖ ﻣﻄﺎﻟﺐ

ﻋﻨﻮان ﻣﻄﺎﻟﺐ                                                                  ﺷﻤﺎره ﺻﻔﺤﻪ
-5-4 ﭘﻴﺎدهﺳﺎزی ﻫﻤﺎﻫﻨﮕﻲ ﺑﻬﻴﻨﻪ…………………………………………………………………………………. 57

-1-5-4 اﻧﺘﺨﺎب اﻟﮕﻮرﻳﺘﻢ ﻫﻤﺎﻫﻨﮕﻲ ﺑﻬﻴﻨﻪ……………………………………………………………………. 57

-2-5-4 ﭘﻴﺎدهﺳﺎزی……………………………………………………………………………………………….. 57

-6-4 ﺗﻨﻈﻴﻢ ﭘﺎراﻣﺘﺮﻫﺎی ﺑﻬﻴﻨﻪﺳﺎزی……………………………………………………………………………… 58

-7-4 ﻧﺘﺎﻳﺞ ﻫﻤﺎﻫﻨﮕﻲ ﺑﻬﻴﻨﻪ………………………………………………………………………………………… 60

-8-4 ﺑﺮرﺳﻲ ﺗﺄﺛﻴﺮات ﺗﻮﻟﻴﺪات ﭘﺮاﻛﻨﺪه ﺑﺮ روی ﻫﻤﺎﻫﻨﮕﻲ ﺣﻔﺎﻇﺘﻲ ﺳﻴﺴﺘﻢ ﺗﻮزﻳﻊ ﻧﻤﻮﻧﻪ………………. 61

-1-8-4 ﺑﺮرﺳﻲ ﺗﺄﺛﻴﺮات ﻗﺮار دادن ﺗﻮﻟﻴﺪات ﭘﺮاﻛﻨﺪه در ﺑﺎسﻫﺎی ﻣﺨﺘﻠﻒ………………………………. 62

-2-8-4 ﺑﺮرﺳﻲ ﺗﺄﺛﻴﺮات اﻓﺰاﻳﺶ ﻇﺮﻓﻴﺖ ﺗﻮﻟﻴﺪ ﭘﺮاﻛﻨﺪه……………………………………………………. 62

-9-4 ﺑﺎزﮔﺮداﻧﺪن ﻫﻤﺎﻫﻨﮕﻲ ﺑﻴﻦ ﺗﺠﻬﻴﺰات ﺣﻔﺎﻇﺘﻲ (رﻟﻪﻫﺎ) ﺑﺎ ﻛﺎرﺑﺮد ﻣﺤﺪود ﻛﻨﻨﺪه ﺟﺮﻳﺎن ﺧﻄﺎ 64 . FCL

-1-9-4 ﺑﺮرﺳﻲ اﻓﺰاﻳﺶ ﻣﻘﺪار FCL ﺑﻪ ﻣﻨﻈﻮر ﺟﺒﺮان ﺗﺄﺛﻴﺮات ﺗﻮﻟﻴﺪ ﭘﺮاﻛﻨﺪه ﺑﺮ روی ﺣﺎﺷﻴﻪ ﻫﻤﺎﻫﻨﮕﻲ

رﻟﻪﻫﺎ 65………………………………………………………………………………………………………… (CTI)

-2-9-4 ﻣﻘﺎﻳﺴﻪ ﺗﺄﺛﻴﺮات RFCL و 66……………………………………………………………………… IFCL

-10-4 اﻫﺪاف ﻣﻮرد ﻧﻴﺎز ﺑﺮای ﺣﻔﻆ ﻫﻤﺎﻫﻨﮕﻲ رﻟﻪﻫﺎ در ﺣﻀﻮر ﺗﻮﻟﻴﺪات ﭘﺮاﻛﻨﺪه ﺑﺎ ﻛﺎرﺑﺮد ﻣﺤﺪود ﻛﻨﻨﺪه

ﺟﺮﻳﺎن ﺧﻄﺎ 67 ………………………………………………………………………………………………….. (FCL)

-1-10-4 اراﺋﻪ ﻳﻚ راﻫﻜﺎر ﻣﺪون ﺑﺮای اﻧﺘﺨﺎب ﻧﻮع و ﻣﻘﺪار FCL ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ اﻫﺪاف 1 و 67…………. 2

-2-10-4 ﻃﺮاﺣﻲ روﻧﺪ اﻧﺠﺎم ﻫﻤﺎﻫﻨﮕﻲ ﺑﻬﻴﻨﻪ ﺳﻴﺴﺘﻢ ﻗﺪرت در ﺣﻀﻮر ﺗﻮﻟﻴﺪات ﭘﺮاﻛﻨﺪه ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ

اﻫﺪاف ﻣﺸﺨﺺ ﺷﺪه………………………………………………………………………………………………. 68

-3-10-4 روﻧﺪ اﻧﺘﺨﺎب ﻣﻘﺪار ﻣﻨﺎﺳﺐ ﻣﺤﺪود ﻛﻨﻨﺪه ﺟﺮﻳﺎن ﺧﻄﺎ………………………………………… 74

-11-4 اﻧﺘﺨﺎب ﻛﺎرﺑﺮد و ﻣﻘﺪار ﻣﻨﺎﺳﺐ ﻣﺤﺪود ﻛﻨﻨﺪه ﺟﺮﻳﺎن ﺧﻄﺎ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ اﻟﮕﻮرﻳﺘﻢ ﻣﻄﺮح ﺷﺪه ﺑﺮای

ﺷﺒﻜﻪ ﻧﻤﻮﻧﻪ……………………………………………………………………………………………………………. 74

-1-11-4 ﺑﺮرﺳﻲ ﻧﻴﺎز ﺑﻪ ﻛﺎرﺑﺮد………………………………………………………………………………… 74

-2-11-4 اﻧﺘﺨﺎب ﻧﻮع 74……………………………………………………………………………………… FCL

-3-11-4 اﻧﺘﺨﺎب ﻣﻘﺪار ﻣﻨﺎﺳﺐ ﻣﺤﺪود ﻛﻨﻨﺪه ﺟﺮﻳﺎن ﺧﻄﺎ………………………………………………. 75

-12-4 ﭼﻨﺪﻳﻦ ﭘﻴﺸﻨﻬﺎد در ﻣﻮرد ﺑﻬﺮهﺑﺮداری از DG و 76………………………………………………… FCL

-13-4 ﻧﺘﻴﺠﻪﮔﻴﺮی…………………………………………………………………………………………………… 76

ﻓﺼﻞ ﭘﻨﺠﻢ – ﻧﺘﻴﺠﻪﮔﻴﺮی و ﭘﻴﺸﻨﻬﺎدات…………………………………………………………………………….. 78

ﻓﻬﺮﺳﺖ ﻣﻄﺎﻟﺐ

ﻋﻨﻮان ﻣﻄﺎﻟﺐ                                                                    ﺷﻤﺎره ﺻﻔﺤﻪ
-1-5 ﻧﺘﻴﺠﻪﮔﻴﺮی…………………………………………………………………………………………………. .. 78

-2-5 ﭘﻴﺸﻨﻬﺎدات……………………………………………………………………………………………………… 79

ﺿﻤﻴﻤﻪ اﻟﻒ – اﻃﻼﻋﺎت ﺷﺒﻜﻪ………………………………………………………………………………………… 81

ﻓﻬﺮﺳﺖ ﻣﻨﺎﺑﻊ ﻓﺎرﺳﻲ……………………………………………………………………………………………………. 84

ﻣﺮاﺟﻊ اﻧﮕﻠﻴﺴﻲ……………………………………………………………………………………………………….. 85

ﻓﻬﺮﺳﺖ ﺟﺪولﻫﺎ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6‐8 نمونه ای از تحلیل حساسیت 84
6‐9 نتایج تحلیل حساسیت با قیمت متغیر برای سوخت 85
6‐10 نوع سیستم بهینه 86
7‐1 انتخاب بار‐ دستگاه ها و حالت شبکه 89
7‐2 ورود اطلاعات ساعتی بار در روزهای هفته به تفکیک ماه های مختلف 89
7‐3 ورود اطلاعات ساعتی بار روز تعطیل آخر هفته 90
7‐4 انتخاب نوع سوخت مصرفی 90
7‐5 شماتیک نرم افزار بعد از وارد کردن مشخصات دستگاه ها 91
7‐6 ورود اطلاعات ضریب صافی آسمان به تفکیک ماه برای شهر تهران 91
7‐7 ورود اطلاعات سرعت باد به تفکیک ماه برای شهر تهران 92
7‐8 قیمت دیزل بر حسب دلار بر لیتر(0.1دلار بر لیتر) 92
7‐9 0.0025 دلار بر متر مکعب) 92
قیمت گاز بر حسب دلار بر متر مکعب (
7‐10 اجرای نرم افزارتوسط دکمه CALCULATE 93
7‐11 نتایج شبیه سازی اولین انتخاب بهینه 93
7‐12 قدرت خروجی ساعتی توسط دستگاه میکروتوربین در روز اول ماه 94
7‐13 قدرت خروجی ساعتی توسط دستگاه دیزل ﮊنراتور در روز اول ماه 94
7‐14 قدرت خروجی ساعتی توسط دستگاه موتور احتراق درونی در روز اول ماه 94
7‐15 قدرت خروجی ساعتی توسط سه دستگاه در روز اول ماه 95
7‐16 نتیجه شبیه سازی استفاده از تمام دستگاه های ) DG بدترین انتخاب بهینه) 95
7‐17 قدرت خروجی ساعتی توسط دستگاه PV در روز اول ماه 96
7‐18 قدرت خروجی ساعتی توسط دستگاه توربین بادی در روز اول ماه 96
7‐19 قدرت خروجی ساعتی توسط دستگاه میکرو توربین در روز اول ماه 96
7‐20 قدرت خروجی ساعتی توسط دستگاه دیزل ﮊنراتور در روز اول ماه 97
7‐21 قدرت خروجی ساعتی توسط دستگاه موتور احتراق درونی در روز اول ماه 97
7‐22 قدرت خروجی ساعتی توسط دستگاه باطری در روز اول ماه 97
7‐23 حساسیت نسبت به تغییرات گاز و دیزل 98
7‐24 حساسیت نسبت به تغییرات سرعت باد و قیمت دیزل با تابش خورشید برابر6kwh/m2/d 98
7‐25 حساسیت نسبت به تغییرات سرعت باد و قیمت دیزل با تابش خورشید برابر4.55kwh/m2/d 98
7‐26 حساسیت نسبت به تغییرات قیمت دیزل و تابش خورشید 99

ﻋﻨﻮان ﺷﻤﺎره ﺻﻔﺤﻪ
ﺟﺪول -1-2 ﺛﺎﺑﺖﻫﺎی ﻣﻨﺤﻨﻲ ﻣﺸﺨﺼﻪ ﺟﺮﻳﺎن ﻣﻌﻜﻮس 20
ﺟﺪول -2-2 اﻧﻮاع ﻣﺸﺨﺼﻪ ﻋﻤﻠﻜﺮد رﻟﻪﻫﺎ 29
ﺟﺪول -1-3 ﺗﺠﻬﻴﺰات ﺣﻔﺎﻇﺘﻲ و ﺗﻨﻈﻴﻤﺎت ﺑﺮای ﭼﻴﺪﻣﺎن ﺳﻴﺴﺘﻢ ﻓﺸﺎر ﺿﻌﻴﻒ (LV Supply) 48
ﺟﺪول -1-4 ﭘﺎراﻣﺘﺮﻫﺎی ﻣﻬﻢ ﺑﻬﻴﻨﻪﺳﺎزی ژﻧﺘﻴﻚ 65
ﺟﺪول -2-4 ﭘﺎراﻣﺘﺮﻫﺎی ﺑﻬﻴﻨﻪﺳﺎز ژﻧﺘﻴﻚ 65
ﺟﺪول -3-4 ﻧﺘﻴﺠﻪ ﻫﻤﺎﻫﻨﮕﻲ ﺑﻬﻴﻨﻪ (ﺣﺪاﻗﻞ ﺣﺎﺷﻴﻪ ﻫﻤﺎﻫﻨﮕﻲ) 66
ﺟﺪول -4-4 ﺗﻨﻈﻴﻤﺎت ﺑﻬﻴﻨﻪ رﻟﻪ ﻫﺎ 68
ﺟﺪول -5-4 ﺗﻌﺪاد و ﻧﻮع اﻧﺤﺮاف از ﺣﺎﺷﻴﻪ ﻫﻤﺎﻫﻨﮕﻲ ﺑﻪ ازای ﻗﺮاردادن DG=20MVA در 70
ﺑﺎﺳﻬﺎی ﻣﺨﺘﻠﻒ ﺳﻴﺴﺘﻢ ﺗﻮزﻳﻊ
ﺟﺪول -6-4 ﺗﺄﺛﻴﺮات ﻣﻨﺎﺑﻊ ﺗﻮﻟﻴﺪ ﭘﺮاﻛﻨﺪه ﺑﺎ ﻇﺮﻓﻴﺖ ﻣﺨﺘﻠﻒ ﺑﺮ روی ﺣﺪاﻛﺜﺮ اﻧﺤﺮاف از ﺣﺎﺷﻴﻪ 72
ﻫﻤﺎﻫﻨﮕﻲ
ﺟﺪول -7-4 ﻣﻘﺎﻳﺴﻪ ﺣﺪاﻛﺜﺮ اﻧﺤﺮاف ﻣﻮﺟﻮد ﺑﻪ ازای اﻧﺪازهﻫﺎی ﻣﺨﺘﻠﻒ ﻣﺤﺪود ﻛﻨﻨﺪه ﺟﺮﻳﺎن 74
ﺧﻄﺎ
ﺟﺪول -8-4 ﻣﻘﺎﻳﺴﻪ ﻣﺠﻤﻮع اﻧﺤﺮاف از ﺣﺎﺷﻴﻪﻫﺎی ﻫﻤﺎﻫﻨﮕﻲ ﺑﺮای اﻧﻮاع ﻣﺤﺪود ﻛﻨﻨﺪه ﺟﺮﻳﺎن 75
ﺧﻄﺎی 40 اﻫﻤﻲ
ﺟﺪول اﻟﻒ–1 اﻃﻼﻋﺎت ﺧﻄﻮط 90
ﺟﺪول اﻟﻒ–2 اﻃﻼﻋﺎت ﺑﺎر 91
ﺟﺪول اﻟﻒ–3 زوﺟﻬﺎی اﺻﻠﻲ / ﭘﺸﺘﻴﺒﺎن ﺷﺒﻜﻪ 92

ﻓﻬﺮﺳﺖ ﺷﻜﻞﻫﺎ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ﻋﻨﻮان ﺷﻤﺎره ﺻﻔﺤﻪ
ﺷﻜﻞ -1-1 اﺗﺼﺎل ﺳﻴﺴﺘﻢ FCL-DG 10
ﺷﻜﻞ -2-1 ﭼﺎرﭼﻮب ﭘﺎﻳﺎن ﻧﺎﻣﻪ 11
ﺷﻜﻞ -1-2 ﻧﺎﺣﻴﻪﺑﻨﺪی ﺣﻔﺎﻇﺘﻲ 16
ﺷﻜﻞ –2-2 ﻣﺸﺨﺼﻪ ﻋﻤﻠﻜﺮدی رﻟﻪ ﺟﺮﻳﺎن زﻳﺎد 19
ﺷﻜﻞ -3-2 اﻧﻮاع رﻟﻪﻫﺎی ﺟﺮﻳﺎن زﻳﺎد 21
ﺷﻜﻞ -4-2 اﻧﻮاع رﻟﻪﻫﺎی ﺟﺮﻳﺎن زﻳﺎد ﻣﻌﻜﻮس 22
ﺷﻜﻞ -5-2 ﻣﻨﺤﻨﻲﻫﺎی زﻣﺎن ﻣﻌﻜﻮس 23
ﺷﻜﻞ -6-2 ﻛﺎرﺑﺮد ﻗﻄﻊ آﻧﻲ در رﻟﻪ اﺿﺎﻓﻪ ﺟﺮﻳﺎن 24
ﺷﻜﻞ -7-2 ﻣﺸﺨﺼﺎت ﻣﺨﺘﻠﻒ رﻟﻪ ﺟﺮﻳﺎن زﻳﺎد 29
ﺷﻜﻞ -9-2 زﻣﺎن ﻋﻤﻠﻜﺮد رﻟﻪ ﻫﺎ ﺑﻪ ازای ﻣﻘﺎدﻳﺮ ﻧﺴﺒﺘﺎً زﻳﺎد Isc / Ip رﻟﻪﻫﺎ 30
ﺷﻜﻞ -1-3 ﺟﻠﻮﮔﻴﺮی از ﻋﻤﻠﻜﺮد رﻟﻪ ﺟﺮﻳﺎن زﻳﺎد 36
ﺷﻜﻞ -2-3 ﺗﺮﻳﭗ دادن اﺷﺘﺒﺎه رﻟﻪ ﻫﺎ 36
ﺷﻜﻞ -3-3 ﺗﺄﺛﻴﺮ ﺣﻀﻮر DG ﺑﺮ ﺑﺎزﺑﺴﺖ اﺗﻮﻣﺎﺗﻴﻚ 38
ﺷﻜﻞ -4-3 ﻳﻚ ﻓﻴﺪر ﺳﺎده ﺗﻮزﻳﻊ ﺳﻨﺘﻲ 38
ﺷﻜﻞ -5-3 ﻣﺜﺎل ﻫﻤﺎﻫﻨﮕﻲ در ﻓﻴﺪر ﺷﻌﺎﻋﻲ 39
ﺷﻜﻞ -6-3 ﻣﺤﺪوده ﻫﻤﺎﻫﻨﮕﻲ رﻟﻪ – رﻟﻪ 40
ﺷﻜﻞ -7-3 ﺳﻴﺴﺘﻤﻲ ﺑﺎ اﺗﺼﺎل دو واﺣﺪ DG1 و DG2 41
ﺷﻜﻞ -8-3 ﺣﺎﻟﺖ ﺧﻄﺎی ﭘﺎﺋﻴﻦ دﺳﺘﻲ در ﺳﻴﺴﺘﻢ ﺑﺎ اﺗﺼﺎل DG3 41
ﺷﻜﻞ -9-3 ﺣﺎﻟﺖ ﺧﻄﺎی ﺑﺎﻻ دﺳﺘﻲ در ﺳﻴﺴﺘﻢ ﺑﺎ اﺗﺼﺎل DG3 41
ﺷﻜﻞ -10-3 ﺧﻄﺎی ﭘﺎﺋﻴﻦ دﺳﺘﻲ در ﺳﻴﺴﺘﻤﻲ ﺑﺎ اﺗﺼﺎل DG1, DG2, DG3 42
ﺷﻜﻞ -11-3 ﺧﻄﺎی ﺑﺎﻻ دﺳﺘﻲ در ﺳﻴﺴﺘﻤﻲ ﺑﺎ اﺗﺼﺎل DG1, DG2, DG3 42
ﺷﻜﻞ -12-3 ﻫﻤﺎﻫﻨﮕﻲ رﻟﻪﻫﺎ ﺑﺮای ﺧﻄﺎﻫﺎی ﭘﺎﻳﻴﻦدﺳﺖ ﺑﺎ DG 43
ﺷﻜﻞ -13-3 ﺣﺎﺷﻴﻪ ﻣﻮﺟﻮد ﺑﺮای ﺑﺎﻗﻲ ﻣﺎﻧﺪن ﻫﻤﺎﻫﻨﮕﻲ رﻟﻪ ﺑﺮای ﺧﻄﺎﻫﺎی ﺑﺎﻻدﺳﺖ ﺑﺎ 44
DG 52
ﺷﻜﻞ -14-3 ﻓﻠﻮﭼﺎرت رﻟﻪﮔﺬاری ﺗﻄﺒﻴﻘﻲ
ﺷﻜﻞ -1-4 دﻳﺎﮔﺮام ﺷﺒﻜﻪ ﺗﻮزﻳﻊ 30 ﺑﺎﺳﻪ IEEE اﺻﻼح ﺷﺪه ﺗﺤﺖ ﻣﻄﺎﻟﻌﻪ 57
ﺷﻜﻞ -2-4 دﻳﺎﮔﺮام ﺷﺒﻜﻪ 30 ﺑﺎﺳﻪ اﺻﻼح ﺷﺪه IEEE در ﻧﺮماﻓﺰار Digsilent 62
ﺷﻜﻞ -3-4 ﺑﺮرﺳﻲ ﺑﻴﺸﺘﺮﻳﻦ ﺗﺄﺛﻴﺮات ﻗﺮاردادن DG ﺑﻪ ﻇﺮﻓﻴﺖ 15 MVA در ﺑﺎﺳﻬﺎی 69
ﻣﺨﺘﻠﻒ ﺳﻴﺴﺘﻢ ﺗﻮزﻳﻊ
ﺷﻜﻞ -4-4 ﺗﻐﻴﻴﺮات ﻣﻘﺪار CTI رﻟﻪﻫﺎی ﺷﺒﻜﻪ ﺗﻮزﻳﻊ ﺑﺎ اﻓﺰاﻳﺶ ﺳﻬﻢ ﺗﻮﻟﻴﺪ ﭘﺮاﻛﻨﺪه 71